美章网 资料文库 智能控制论文范文

智能控制论文范文

智能控制论文

智能控制论文范文第1篇

1.1控制模块的硬件设计控制模块选用了STM32F107VC32位ARM处理器[1],此芯片集成了各种高性能工业标准接口,且STM32不同型号产品在引脚和软件上具有完美的兼容性,可以轻松适应更多的应用。MCU本身包含有标准RS23,ISP及USB通讯接口,运行频率高达72MHz,因而使得系统能够以精简的设计,高速的数据处理速度完成智能控制。STM32系列单片GPIO口多达51个,大部分可复用,本模块中所配置GPIO口包括:RS232通讯接口PB10,PB11,连接图2中Flow_TXD,Flow_RXD,传输流量传感器检测信号;ISP三线通讯接口PC9,PC10,PC11,对应图3中PV_CS,PV_SLCK,PV_DIN信号;PC8输出切换信号。控制模块选用的流量传感器为FS4001系列小流量气体质量流量传感器。FS4001是专门为各类小流量气体的测量和过程控制而设计的,其独特的封装技术使之可用于各类管径,成本低、易安装、不需要温度压力补偿,可替代容积式或压差式的传统流量传感器,其精度达到±(1.5+0.5FS)%,重复性达到±0.25%,1mm通径传感器,最大流量达到200SCMM。FS4001与MCU通过RS232接口进行通讯,经过MAX3232实现电平转换后,按照专用通讯协议,可完成FS4001自校准以及流量读取。接口电路见图2。STM32F107VC对测得流量和设置流量之差进行比较以及控制算法的计算后,将控制数字量输出至DA芯片LTC2641,DAC将数字量转换成模拟控制量,经低功耗、精密单电源运算放大器OPA2234及放大管2N3904将信号放大后驱动比例阀,完成流量的控制。控制模块中的DAC为单极性LTC2641,此芯片仅消耗120μA电源电流,就满标度阶跃而言,仅用1μs就能稳定在0.5LSB以内。DAC通过3线SP兼容串行接口,以高达50MHz的时钟速率通信,其6位INL误差最大值在整个温度范围内为仅±2LSB。DA转换及比例阀驱动电路见图3。控制模块中比例阀选用VSO?系列热补偿型微型比例电磁阀[2],通过VSO技术(voltagesensitiveorifice),即电压敏感性通径技术,比例阀可以根据输入电流的大小,精确的控制气体流量比例。比例阀通过直流电流驱动或脉冲调幅驱动,并使用闭环反馈控制,能够获得优化的系统性能。本模块中的比例阀线圈最小工作电压20VDC,控制电流范围在0~91mA,电流与流量的关系如图4。模块中气氛切换的功能实现是通过MCU发送切换信号,控制管子2N3904的导通与关闭,来驱动VZ100电磁阀两通道的转换来完成。切换功能电路见图5。

1.2模块的软件设计模块软件分为两部分:控制软件及交互软件。控制软件包括数据采集,与比列阀,流量传感器及上位计算机的通讯,数据滤波,PID控制算法等,采用C语言;交互软件则主要用于计算机操作,便于用户进行流量设置与气氛切换的操作,同时可实时显示气氛流量曲线以及数据储存,采用VB语言编写。

2测试结果

目前模块样机配置于DSC30热分析仪上,通过此模块控制通入仪器炉体的吹扫气氛,测试时,模块的气路一,通入氮气,配合控制软件,设置气氛流量为50ml/min,观察仪器DSC基线数据约25min,采样图谱见图6所示。图谱显示基线平直度完美。DSC30共有两路气氛输入,在实验过程中设置气路一气氛(氮气)流量为50mL/min,气路二气氛(氧气)流量60mL/min。开始测试时,缺省通入气氛一,实验5min后,按气路切换键,切换为气氛二通入,可观察到软件窗口中气氛一和气氛二数值的变化,气路二采样数据(以秒为时间单位)见表一。根据测试数据可以看出,模块的气氛控制精度误差<±0.1mL/min,切换稳定时间<16s。

3结束语

智能控制论文范文第2篇

1.1设计思路简单在传统的矿井生产控制器的设置过程之中,在设置之前,充分了解到要进行控制的矿井生产系统的实际情况,根据要进行控制的矿井生产设备的实际情况来进行控制模型的设计,在这个过程之中,随着矿井生产系统的运行变化,往往会出现一些不确定性因素,导致矿井生产系统出现变化,影响到矿井生产控制系统功能的发挥,可以说,要进行传统的矿井生产控制系统的设计是相当麻烦的。在这样的背景下,将DCS智能控制系统技术应用在矿井生产控制领域,利用DCS智能控制系统技术之中的函数近似技术,将自动化控制参数拟合成为相应的数学模型,根据内置的模拟器系统进行对控制参数的转换,有效降低了矿井生产控制系统的设计难度。

1.2性能优越DCS智能控制系统技术的应用,可以对矿井生产系统之中的各种参数进行调整优化,相比较于传统的矿井生产控制系统,也更容易进行操作调控,对于新型数据信息的处理能力也更优越。

1.3一致性好传统的矿井生产系统是根据特定的矿井生产设备所设定的,只能够对特定的矿井生产系统进行控制。而应用了DCS智能控制系统技术的矿井生产系统对于大部分的矿井生产系统都有着良好的控制效果。

2DCS智能控制系统用于矿山生产的具体途径

2.1优化设计在DCS智能控制系统技术用于矿井生产控制的过程之中,可以充分结合DCS智能控制系统的先进理论技术以及相应的实践经验。在传统的矿井生产控制过程之中,主要采用的设计手段就是结合实际的工作经验来进行控制系统的设计,这种设计方法缺乏先进的系统理论的支持,在实际的运行过程中,往往会出现一些难以解决的故障问题。DCS智能控制系统技术的应用,可以有效地优化矿井生产控制系统的设计,并通过对先进的计算机科学技术的应用,有效地缩减产品从设计到成型的时间,提升了矿井生产控制的控制效率。截至目前为止,DCS智能控制系统技术主要应用的是遗传算法技术和专家系统技术,通过对遗传算法技术的应用,可以直接对矿井生产控制系统的结构对象进行优化设计,这就可以保证矿井生产控制系统具备更好的全局控制能力,也可以自动进行对于相关问题的检索控制;通过对专家系统的应用,可以充分吸取来自专家的相关意见,对于矿井生产控制系统进行有效的优化设计,提升矿井生产控制系统的应用水平。

2.2故障诊断一般情况下,矿井生产设备出现的故障问题具有非线性的特点,这就给矿井生产控制系统解决矿井生产设备的故障问题带来了很多困难。在这样的背景下,通过在矿井生产控制系统之中引进DCS智能控制系统技术,可以有效提升矿井生产控制系统的检索效率。并通过对DCS智能控制系统技术之中的专家系统、模糊逻辑算法、神经网络结构的应用,更加有效地确定矿井生产设备出现故障的区域,提升矿井生产设备的故障诊断的有效率。

2.3智能控制在矿井生产控制过程引进DCS智能控制系统技术已经成为了科学领域的未来发展趋势,一般情况下,矿井生产控制过程引进DCS智能控制系统技术主要集中在对于DCS智能控制系统技术之中的模糊算法、专家系统、神经网络结构的引进之上。DCS智能控制系统技术对于矿井生产系统的主要应用层面也主要集中在以下几个层面:第一,进行对矿井生产设备之中的数据参数的分析;第二,对于矿井生产设备的运行状态的实时监督管理;第三,对于控制系统的有效管理;第四,对于矿井生产系统之中出现的故障进行及时的记录分析。

3结论

智能控制论文范文第3篇

1.1加上环境温度,进水温度,水压,水流量[3]的变化影响,出水温度将满足下列函数关系式。其中λ为温度影响因子,Q为水流量,P为水压。在恒温控制系统中,为了可以减少整个温控系统的延时性,在系统输出误差绝对值较大时,采用饱和输出的工作方式。同时,为了防止系统过大的超调量,在系统误差的绝对值在小范围时,采用增大积分系数的办法,以提高系统的稳态精度。因此本系统所采用的智能PID算法是一种非线性算法,可以显著改善恒温系统的动态响应和稳态精度。该系统的执行机构为电动流量调节阀,其开度控制是通过接通时间的长短来进行的,因此在引入PID控制时使用增量式。

1.2首次阀门开度技术系统会预先设置好4组PID参数,为了使水温能够快速且准确的达到设定温度,在进行PID调节时,系统会根据3号温度传感器采集到的环境温度T3,与设定温度T3s(用户设定,默认值为20℃,参数设定范围为-15℃~45℃)和设定参数ΔT3s(用户设定,默认值为15℃,参数设定范围为5℃~30℃)之间的关系来确定首次阀门的开度。若T3T3s-ΔT3s,则系统选择PID1的设定参数;若T3s-ΔT3s<T3<T3s,则系统选择PID2的设定参数;若T3T3s,则系统选择PID3的设定参数。这样可以保证水温能快速稳定的达到目标温度。

1.3温度斜率参与控制技术为了提高空气能热水器出水温度达到60℃以上,有效防止温度超调量过大,采取温度斜率参与控制来提前控制温度的快速上升。针对温度上升阶段,当阀门开度逐渐减小时,温度上升曲线的斜率为递增趋势,这样容易造成温度超调量大,导致机组温度过高而保护停机。在温度上升阶段加入斜率参与控制技术,当温度的上升量大于设定值时,即当每10s温度上升大于0.6℃时,阀门停止关阀动作,这样能控制温度上升的曲线斜率为递减趋势,给水温变化留有合理的缓冲时间,防止超调量过大导致机组保护停机。

1.4阀门跟踪技术在低温情况下,系统加入了阀门跟踪技术,即在阀门已经接近处于全关位置,但是水温还没有达到设定温度,这时就启动阀门跟踪,使阀门停在现在的位置,等着温度上升,而不再进行关小阀门继续调节,这样既能达到目标温度,又能防止在水温接近目标温度时,阀门频繁动作[9]。同时在PID调节的同时加入阀门位置跟踪,也有利于防止阀门关死导致机组压力过大而停止工作。从首次开阀进入PID调节到T1(出水温度)达到Tsp(目标温度)的这一温度上升时段内参与,即当信号到来时从全开位置开始记录单片机累计向阀门发出的脉冲个数n。当n=b时,则暂时屏蔽单片机向步进电机输出脉冲,此后待T1温度每10秒钟上升幅度小于设定值时,并且T1<Tsp则输出脉冲屏蔽暂时退出,切入PID调节。此时阀门跟踪继续参与,若在T1<Tsp时,出现了b=N5(N5定义为阀门的最大开度),则再次屏蔽输出脉冲,使T1每10秒钟上升幅度小于设定值时,则本次阀门位置跟踪结束。

1.5自适应计算参数系统一共有4组PID控制参数,通过3号温度传感器采集到的环境温度可以确定不同的地区和不同的季节。同时将采集到的出水温度和用户的设定温度进行比较计算出偏差,系统可以自动选择前3种PID控制参数,同时系统还会通过2号温度传感器采集到水箱温度T2。若系统正式进入PID调节15分钟后,检测到T2SP-10℃且T260℃时(SP=T1s-ΔTLs),则系统自动转入PID4的调节状态。所以本系统具有一定的自适应能力,可以适应不同地区和季节的恒温出水。

1.6复合智能控制系统流程复合智能控制系统的软件设计采用模块化设计结构,具有自适应能力,可以根据环境温度,进水温度和水箱温度自动切换到合适的PID参数组。在智能PID算法的基础上辅以首次阀门开度技术,温度斜率参与控制技术,阀门跟踪技术形成了复合智能控制算法。克服了系统的调节滞后,响应缓慢,难以控制等问题。其流程图如图2所示。

2测试结果与分析

系统经过前期方案论证和软硬件设计,在某型号热泵热水器上实际运行,获得了满足工业控制要求的控制曲线,由此可以证明复合智能控制算法所提出的控制策略和程序实现方法符合实际控制要求。以下分别给出传统数字PID控制算法和复合智能控制算法的恒温系统控制曲线。其中环境温度为20℃,目标温度为60℃,图3为采用传统数字PID测试曲线,图4为采用复合智能控制算法测试曲线。从图3可知当设定温度为60℃时,温度需要经过13分钟的时间才能达到稳定输出状态,输出温度约为58.5℃,温度的超调量约为6℃。从图4可知当设定温度为60℃时,温度需要经过5分钟就能达到稳定输出状态,输出温度约为59.5℃,温度的超调量约为1.5℃。比较测试曲线可以看出,这种算法可以获得满足工业控制要求的控制曲线,能减小调节时间和超调量,能够在较短的时间内达到用户设定的出水温度。

3结束语

智能控制论文范文第4篇

1.1大型带式皮带机的一般启动方式在大型带式皮带机中一般采用的是全压启动、电抗降压启动以及星三角启动等方式,这些方式虽然能够带动电机使电机进行启动,但是在节能以及启动过程中的保护方面或多或少都存在着一些不足。

1.2大型带式皮带机的一般运行方式现今,大型带式皮带机多是根据皮带机的工艺以及皮带机的最大输送载荷来确定减速机和胶带以及电动机的选用的,同时在运行的过程中一直会处于工频状态。电机是以恒转速进行运行的。这就造成了在大型带式皮带机的运行过程中处于半载或者是空载的情况下的电能的浪费。以及使用多台电机来带动驱动同一条皮带时所形成的分配难题。

2变频调速智能控制系统在大型带式皮带机中的使用

随着我国经济的发展以及电力电子技术水平的不断提高,通过对原有的大型带式皮带机进行变频调速智能控制的改造,使得大型带式皮带机能够根据胶带机的使用工况进行相应的智能变频,同时降低了电机启停时的电流过大对于电网其他用电设备的影响。同时通过使用变频调速智能控制实现了对于电机的软启动,减少了在电机启动的过程中由于突然启停而对于大型带式皮带机中的机械部分以及皮带的影响。

2.1大型带式皮带机变频调速智能控制对于电机的启动方式通过大型带式皮带机进行变频调速智能控制改造,降低了皮带机启动过程中对于减速机、电机机以及皮带机的损害,近些年来由于电力电子技术的发展,使用变频调速技术来取代原有的启动方式,其中变频调速启动实际上是一个降压启动的过程,在原先的启动方式中大型带式皮带机的启动采用的是工频电压,而在变频调速中所采用的是将改变频率的方式来改变输出电压,其中电机输出电压的频率是一个变量而不是工频。通过采用变频调速的软启动方式可以使电机采用慢速启动,从而带动大型带式皮带机进行缓慢启动,将大型带式皮带机中胶带弹性变形所存储的能量缓慢的释放,保护了皮带机中的皮带、减速机、电动机等。

2.2大型带式皮带机变频调速智能控制增加了皮带机的使用寿命大型带式皮带机变频调速智能控制通过采用变频调速的方式可以有效的降低对于大型带式皮带机的损害。其中变频调速智能控制的节电装置是一种电子集成器件,同时它是将机械寿命转化为电子寿命,有效的延长了大型带式皮带机的使用寿命,极大的降低了大型带式皮带机的设备维护量。采用变频调速智能控制的方式能够根据电机的实际载荷来进入自动调速状态来实现对于大型带式皮带机的节能控制,同时确保大型带式皮带机启动过程中的平滑,以及启动过程中转矩较大,且没有冲击电流,实现了重载启动。由于在启动过程中减少了对于大型带式皮带机机械部分的冲击,增大了皮带机的使用寿命,极大的提高了大型皮带机的使用寿命,减少了皮带机的检修量,同时,通过进行智能控制改造,使用电机与减速器之间进行直接连接,去除了原先所采用的液力耦合器这一中间环节,使得电机的传递效率要较原先的传递效率提高5-10个百分点。

2.3大型带式皮带机变频调速智能控制的运行方式大型带式皮带机变频调速智能控制由于采用了智能技术、变频控制技术等对皮带机在运行过程中电机的电流、电压以及功率因数、扭矩等进行检测,并根据载荷量对变频器实现实时跟踪调节电压和频率,并馈送出相适应的输送功率。从而达到降低大型带式皮带能耗的目的。通过使用大型带式皮带机变频调速智能控制实现了皮带机在使用过程中的平滑与稳定,极大的提高了大型皮带机的使用寿命。当使用多台电机来带动皮带机皮带进行运转时,采用主从控制,通过采用PID跟踪调整的方式,有效的实现了各电机的功率平衡,使得各电机在运行时主从电机的电流基本相等,从而实现了多台电机驱动同轴输送机设备时的功率平衡。

2.4大型带式皮带机变频调速智能控制的其他辅助功能大型带式皮带机变频调速智能控制通过采用传感器来对电动机的电流、电压以及功率因数、转矩、速度以及皮带的运行状态(如跑偏、撕裂等)进行检测。并将检测的状态实时输送到液晶显示屏中,对于大型带式皮带机采用手动和自动两种控制方式,两种方式之间可以方便的进行切换,手动方式主要应用于对于大型皮带机的调试与维修。自动控制方式多用于电机的正常运行,通过在电机运行时进行变频调速来使电动机保持在最佳的工作状态,从而达到节能的目的。

3结束语

智能控制论文范文第5篇

1.1温度传感器温度传感器具有对大棚内的温度进行采集、判断和显示的作用。DSl8820智能温度传感器除了能够对温度进行测量之外,还可对温度进行控制,以及把温度从二进制转换成十进制。基于以上优点,本系统选用DSl8820智能温度传感器。该传感器在出厂的时候有自己固定的序列号,序列号为64位,且具有唯一性[8]。信息在通过单线接口进入进出DSl882传感器时,传感器和数字转换电路是集成在一起的。由于该传感器只有一个数据输入/输出口,而DSl8820可以通过并联的方式并联到3或2根线上,且CPU只需1根端口线就能与多个DSl8820进行通信。其识别方式简单,仅需要简单的通信协议就可识别,从而节省很多的材料及减少一些逻辑电路的发生。现场温度以“一线总线”的数字方式进行传输,不需要A/D转换器。这种传输方式不仅适合在恶劣环境下进行现场测量,同时也大大提高了系统的抗干扰性。用户还可以自行设定自动报警的温度上下限值,根据报警的命令来查找是那些DSl8820传感器的温度超限,然后对其进行修改[9]。

1.2单片机控制系统本系统之所以选用AT89S52传感器作为控制器,原因是该传感器的功能很多,实现起来很方便。该传感器具有的功能如下:①具有采集数据的功能,并且可以把采集到的数据在本系统选用的JM12864F液晶显示器上进行实时显示;同时还可以把采集到的数据和一些控制信息通过串口发送到上位机上,并接收上位机的命令来实现一些参数的设置。②可以通过键盘实现参数的设置和手动/自动控制方式的切换。③可以进行输出控制[10]。

1.3上位机系统采用的上位机是一台微型计算机,主要作用是通过RS-485进行串行通讯,同时对下位机进行一系列的控制:①向下位机发送采集数据和输出控制的命令;②接收上传的下位机采集到的数据。③对下位机进行编号、改变下位机的工作方式、设定下位机温度报警的上下限值,以及参数的控制;④对采集到的数据进行显示、存储及查询历史数据。

2系统的主要功能

系统的主要功能主要包括以下3个:棚内环境参数的实时采集、棚内卷帘通风与微喷的控制及上位机的实时监控。棚内环境参数的实时采集功能实现了对土壤和空气的温湿度、光照强度、CO2浓度及pH值等的采集;通过安装的一些传感器、数据采集模块和单片机实现实时检测功能,并将检测的结果数据显示在控制柜的LED显示屏上;最后,将这些数据一并通过无线传输模块发送到上位机,以便园区管理者实时地对棚内的情况进行了解[11]。棚内卷帘通风与微喷的控制功能主要是通过分析采集到的棚内的各种环境参数,结合棚内作物的自身特点要求进行智能决策,实现对卷帘通风和微喷的自动控制。本系统使用的上位机语言开发平台采用的是C#,该操作平台的特点是界面简单明了,可以直观地显示棚内的环境参数变化和作物的生长情况。采集到的数据存储使用的数据库是SQL2000,对历史数据的显示和查阅比较简单,随时可以调出历史数据与当时的实时数据进行对比分析,并可以把数据库里的数据用Excel表格文件导出,便于后期的数据处理。

3系统硬件电路设计

水稻育秧大棚智能控制系统可以实现以下功能:①上位机可以对下位机传感器采集到的数据进行分析处理,然后下达指令控制育秧棚内的微喷、卷帘电机工作;②下位机能通过手动控制来操作该系统,且能够提供良好的人机控制;③采用模块化的设计思想来达到总体功能的要求。系统由时钟电路、复位电路、显示电路、动作执行电路及电机状态检测电路5种电路模块构成[12]。

3.1时钟电路单片机工作的时间基准是由时钟电路提供的,在单片机的XTAL1和XYAL2的两个管脚之间接一个晶振及两个电容就构成了单片机的时钟电路。电路中的电容和石英晶振对振荡频率有微调作用,通常取(30±10)pF石英晶体,选择6MHz或12MHz都可以[13]。时钟电路如图2所示。

3.2复位电路单片机的RST管脚为主机提供了一个外部复位信号输入口,复位信号是高电平有效,单片机的复位方式可由手动复位方式完成[14]。复位电路如图3所示。

3.3电路显示部分系统采用的字符显示模块为JM12864F,无论在硬件连接还是软件调试方面都比数码管有一定的优势。主要体现为:显示快捷简单,只要把钥匙显示内容放入显示模块的存储器里,就可以直观地把要显示的内容显示出来。JM12864F与单片机的连接电路如图4所示。

3.4动作执行电路本系统采用继电路进行控制,通过继电器开闭来控制卷帘电机进行开关棚。这一模块是在系统把实际环境温湿度值与给定界限值相比较后,在越限的情况下执行卷帘电机开/关棚操作。动作执行电路如图5所示。

3.5电机状态检测电路系统可以通过图中RB、RM、RT、LB、LM、LT检测电机执行状态。检测电路如图6所示。

4系统软件设计

系统以C#作为开发语言,开发了水稻育秧棚智能化监控系统,能够直观地显示各个育秧棚内的环境因子变化。同时,采用SQL2000数据库对所采集的数据进行存储,通过运算处理显示各个棚的环境参数,显示形式以数字、图形、曲线为主。用户可以随时查阅历史数据、对比每天监测的数据并导出Excel表格文件,进行分析、报表、打印等操作;另外,还能够根据水稻育秧期的不同时间段对棚内环境参数的不同要求,来设置棚内的参数限值。该系统将以一种统一的、直观的图形化界面将信息展现给使用者,做到可视化程度高、人机交互性好、简单易操作。具体的软件流程图如图7所示[15]。

5RS485串行通讯

RS-485串行通讯具有很多优点,其中比较突出的是它具有前瞻性,是多发送器的电路新标准,采用的电气接口方式是差分平衡方式,可以从根本上消除地线信号。同时,RS-485串行通讯可以实现距离较长的高速通讯功能。虽然RS-485串行通讯可以进行长距离高速通信,但现实情况是大棚到计算机的距离较长,RS-485串行通讯现有的能力实现不了实际的需要。因此,还需要在控制系统的上位机和单片机之间安装一个RS-485的转换器来实现数据的传输。RS-485串行通讯的作用是实现控制系统中上位机与单片机系统之间的通讯:上位机给下位机下达各种命令,下位机根据上位机下达的命令进行判断;根据判断的结果,下位机给上位机发送该命令所要执行的任务。

6结语

智能控制论文范文第6篇

截至目前,古典控制方法一直都无法被人工智能控制技术所取代。但是随着时代的进步和发展,现代控制理论也日臻完善,人工智能软件技术(包括遗传算法、模糊神经网络、模糊控制以及人工神经网络等)逐渐取代了传统的控制器设计常规技术。这些方法有着许多的共同之处:都要具备不同类型和数量的描述特性和系统的“apriori”技术。这些方法都有着显著的优势,所以工业界都做出了不断的尝试,旨在进一步开发和使用这类方法,但是工业界又急于开发该系统,从而使其性能更加优异,系统更加简单、易操作。直流传动的控制程序较为简单,在过去得到了较为广泛的应用。但是不可忽视的是,它们有着难以克服的限制性因素,而且随着DSP技术的不断进步和发展,直流传动的优势逐渐隐没,性能更高的交流传动逐渐取代了直流传动。但近几年,部分厂商逐渐改良工艺,更高性能的直流驱动产品涌入市场,但是人工智能技术却鲜少提及。在未来几年,使用人工智能的直流传动技术将在更大范围内得到推广和普及。

交流传动瞬态转矩具备较高的使用性能,它有着较强的控制性,仅次于直流电机。目前,直接转矩控制(DTC)和矢量控制(VC)是比较常见的高性能交流传动控制方法。当前,不少厂商都顺应市场形势,相继推出了矢量控制交流传动产品,而且无速度传感器的矢量控制产品也大量上市。在性能较高的驱动产品中广泛使用AI技术,将会进一步提高产品的使用性能,截至目前,仅有两个厂家在其生产的产品中运用人工智能(AI)控制器。而在十五年前,日本和德国的研究人员提出了直接转矩控制这一概念,经过了十年的发展演变过程,ABB公司面向市场,将直接转矩控制的传动产品引入市场,让人们能够直接感受直接转矩控制的优势,从而开展相关的研究。可以预见,人工智能技术将会运用到直接转矩控制中,常规的电机数学模型将会被替代,从而退出市场。

人工智能控制器主要分三种类型,即:增强学习型、非监督型和监督型。当前,常规的监督学习型神经网络控制器的学习算法和拓扑结构已基本成型,这在一定程度上限制了此种结构控制器的生产和使用,导致计算机计算时间增长,而且常规非人工智能学习算法在具体应用上效果不明显。而要克服这些困难,最好的办法就是采用试探法和适应神经网络。常规模糊控制器的模糊规则表和规则初值是“a-priori”型,这加剧了调整难度。假若该系统无有效的“a-priori”信息作为支撑,那么将导致系统陷入瘫痪。而要有效克服此类缺陷和困难,就可以运用自适应模糊神经控制器,保证系统的正常运转。

二、电力系统中的智能控制

当前,世界各地的专家和学者都将眼光聚焦于智能控制理论的研究,研究表明,只要合理运用智能系统,就能在很大程度上提高电力系统控制水平,推动我国电力传动系统步入新的阶段。市面上广泛使用的交直流传动系统在控制技术和手段上已日臻成熟,闭环控制、矢量控制都有着较好的运用前景。PID控制法作为最新的控制方法,能较好地完成数学建模需承担的控制任务,但是在具体实践中,电力传动系统表现出较强的不稳定性,随工作状态的变化,电机参数也不断变化着,这加剧了传统建模控制的难度。

智能控制论文范文第7篇

宾馆改造时采用智能客房控制系统,对客房的资源进行集中管理,帮助客人方便使用宾馆客房内的各种用电设备及享用各种软性服务。在该套系统中,每个客房配置一个客房配电箱和一个客房智能控制器。房间内除了冰箱等不能断电的重要插座外,其余的用电设备如照明灯具、电视插座、普通插座等都是由客房智能控制器来控制。客房配电箱供电给智能控制器,控制器通过编程对其末端连接的强电灯具、客房插座、空调风机、空调电磁阀、多路音乐、显示时钟、请勿打扰等功能进行集中控制;每个客房控制器都有自己独立的网络地址,系统底层直接采用标准TCP/IP通信传输协议,通过楼层服务器进行数据的集中和转发,从而保证系统数据的完整和稳定。同时系统通过主干交换机连接所有楼层交换机和数据库服务器以及前台、客服、工程部等部门电脑。客房控制系统设计说明:

1)无人模式:正常客房在无人入住时处于待租无人模式,RCU(智能客控主机)此时处于无人省电运行状态;系统软件显示客房为无人,客房内空调运行于无人模式,受网络远程控制。可在软件端设定其工作状态。

2)开房模式:客人在前台办理入住手续,发电子门锁卡,客房进入已租入住模式(从宾馆管理软件获知);空调将由无人模式自动切换到开房模式,在开房模式下,空调设定温度为舒适温度,并且为高速运行,使客房在客人进入时已达到舒适温度,温度达到设定温度后,关闭电动阀,停止风机运行。

3)欢迎模式:客人利用宾客卡开启门锁,门磁检测后房门开启,自动开启廊灯并延时30s关闭;将门锁开门卡插入节电开关,节电开关进行智能身份识别,只有合法卡方能取电,灯光进入欢迎模式,开启客房内指定灯光,门外显示器及软件显示客房为有人;如果采用智能通讯型取电开关,还可将卡片持有人身份如客人卡、服务员姓名、管理人员姓名等传送到系统软件进行显示。

4)普通模式:客人可通过弱电开关面板对灯光、排气扇、服务功能等进行控制;空调进入本地操作模式,客人可操作温控器按自己的需求来控制客房温度;在软件端可实时查询客房内空调运行情况,如实际温度、设定温度、风速等;客房内“请勿打扰”、“请稍候”、“SOS”、“退房”等服务信息实时传送到门外显示器和软件界面,并有声音及信息提示;当有“SOS”等信息时,门外显示器上“勿扰”、“清理”、“请稍候”指示灯将同时闪烁,以引导相关人员迅速找到此客房。此时不可实现“请勿打扰”服务请求;“请勿打扰”还和“请即清理”、“请稍候”实现互锁;“请勿打扰”状态下按门外显示器的“门铃”键无效;当客人在接听电话或在卫生间时,若门外有人按“门铃”键,客人可在控制面板上按“请稍候”键,同时“门外显示器”上“请稍候”窗口点亮,且不断闪烁,告之请稍等;当客人再次按下此键或开启房门时,此状态取消;浴室内可安装红外微波探测器,当检测到客人进入卫生间时,可自动点亮浴室灯、排气扇(编程修改),如果长时间无人,可关闭卫生间所有灯具及排气扇,以节省能源;衣柜内的衣柜灯由行程开关控制,不进入RCU;空调运行状态和客房温度,门磁等开关状态等信息实时传送到系统软件。

5)睡眠模式:客人休息时,可按下床头“总控”键,系统进入睡眠模式,灯光全部关闭;在睡眠状态下,按任意键自动开启夜灯,并唤醒系统恢复普通模式。

6)已租无人模式:当客人外出(未退房)时,系统进入“已租无人”模式;空调按“已租无人”模式运行,如夏天设置为26℃,风速设置为自动(可自由设置);当客人再次回客房时,空调将自动恢复客人以前设定的状态,以尊重客人的个性化需要。

7)退房模式:当客人按下“退房”键时,信息传送到系统软件,通知服务人员到该客房进行查房,服务人员可以提前进行结账工作,以避免让客人在前台等待过长时间。客房控制系统通过节电开关、空调远控和自动控制等一系列措施,可在保证客房舒适度和客人满意度的前提下,保证最低的能源消耗。通过网络系统将客人的各种要求及时提供给酒店管理方,使客人在第一时间得到优质服务,从而提高客人的满意度。

2宾馆其他区域电气智能控制改造

1)宾馆大堂的温度控制门厅作为宾馆的门面,全天候对客人开放。但是随着大堂人流的不同,空调负荷也不同。通过调查发现大堂人流的分布具有一定规律:清晨入住的旅客较多;而离店的旅客则多集中在中午时分;其余时间,旅客则往来较为随机。因此,大堂的空调热负荷也随着客流变动呈现出规律性波动。改造后的楼控智能系统可以根据这种规律,通过变频器提前调整空调机组和冷水机组的运行状态,减少控制系统动态波动的能源耗费,这既确保了室内温度舒适性,又实现了节能控制。

2)室内照明控制宾馆的室内照明场所,大体上可分为营业场所(大厅、餐厅、客房)照明、内勤办公场所照明和公共空间(走廊、洗手间)照明三部分。本次改造中采用了昼光感知器与红外感应设备来控制照明灯具,具体做法如下:(1)在门厅大堂区域设置昼光感知器:当屋外自然光照充足时,该设备可自动调降可调光型电子安定器的输出以及靠窗灯具的亮度,或直接关闭灯具。在值班室的客控主机内设置了时序控制器(timer):该控制器可在预定的时间根据相应程序自动地对照明环境作模式切换,或控制灯具的明灭,无须手动操作。避免了因忘记关灯而浪费电能。(2)在宾馆的走廊、小型会议室、会客室、卫生间等场所设红外开关装置。走廊内红外感应装置可自动检测该空间内的人体温度:在晚上时,若没有人经过,则会关闭除应急系统外的大部分灯光,当有人经过时,红外线感应器送出信号,使该走廊、通道的灯光可以开启,让人们可以顺利通过,也可以让安全监控能够工作。在会议中心,也设置了红外开关系统。非宴会时间,当有工作人员进入工作厅内工作时,红外线感应器感应到人体体温的红外信号,指令厅内的某几路灯光渐亮,可以让工作人员在有光的情景下工作。当工作人员离开后,厅内的灯光延时10min后关灯。宴会期间,可通过调整面板模式,设置灯光效果。当宴会开始后,一旦红外开关感应到人员入场,则将开启相应照明模式灯光。

3改造前后的比较

该系统安装调试好后,经过一段时间的使用,经实地测量其效果比以前有了很大进步,每个客房房间平均每天10h的用电量如表1所示。通过表1,可以看出改造后客房节电率能提高50%~80%,总用电量节约20%~30%,极大地节省了电能,并保证宾馆的软硬件设施的先进性。提升宾馆的整体形象,提升客人对宾馆的评价,从而大大增加客流量,提高宾馆总体的经营收入。该控制方式不仅安全,可靠,更符合国家提倡绿色宾馆建设要求。

4结束语

智能控制论文范文第8篇

系统的硬件电路是以TI公司生产的CC2530作为本系统的核心微处理器,选择了温室内的温度、湿度、光照度三个主要环境因子作为监测的对象,利用相应的传感器来采集各个环境参数,还可根据一些特殊需求扩展监测其它环境因子,如土壤水分、CO2浓度等对作物生长影响较大的因子。另外,本系统设置了三个继电器接口以实现对三个电器设备的远程控制。

1.1协调器节点硬件电路总体架构协调器节点硬件设计主要分为七个模块:供电电源、振荡器晶振电路、RF无线电收发射频电路、LED指示灯、按键复位控制电路、串口/USB转换电路和仿真电路。其总体架构图如下图1所示,在本系统中,CC2530芯片的工作电压为3.3V,供电电源主要负责为其提供稳定的3.3V电压。节点之间采用RF无线通信,LED指示灯电路的作用是提供通信指示,如是否连接、等待连接。微处理器要处理内部程序使电路正常运行,需要晶振电路产生内部时钟信号。复位电路的主要作用是对CC2530内部程序的复位重启,并利用按键的组合来实现RF无线通信的物理连接。同时,要求收发同频段实现有效的物理连接,达到传送监测数据的目的,还需要由RF无线电收发电路完成传感器和协调器两节点之间RF无线通信;转换电路主要是将USB接口连接到上位机PC里面,实现串行通信;仿真电路主要是利用专门的接口实现在线编程CC2530,并通过调试电路板,显示电路的功能和效果。

1.2路由器及终端节点总体架构如图2所示为本系统的路由器及终端节点硬件总体架构。从图中可以看出路由器及终端节点主要由七个模块组成,分别是电源模块、终端设备控制模块、传感器数据采集模块(温度传感器、光照传感器、湿度传感器)、LCD显示模块和扩展监测模块等组成。其中数据采集模块主要是对温度、湿度、光照度的采集,选用的温度传感器为DS18B20,温湿度传感器选用了数字式SHT71,CC2530自带12位ADC采集传感器输出电压作为光照强度传感器。这三个传感器的硬件电路较为简单,在此不再描述。另外,为了满足用户的不同需求及不同农作物的生长特点,本电路还设计了可以进行传感器扩展的扩展监测模块,从而提高系统的灵活性。

2系统软件设计

本系统软件设计开发环境选用IAREmbeddedWorkbench,能够支持各种微处理器,其编译器有很多优点,如编译速率快、代码可移植、可优化SOC集成芯片等,很大程度上体现了对硬件资源的节省。限于篇幅要求,本系统软件设计流程图不再给出。

2.1协调器节点软件设计协调器节点软件设计实现ZigBee网络组建,采集温度、湿度、光照度三个主要环境参数后,汇总相关数据再发送至上位机,由上位机对相关的数据和即时状态进行显示、存储等,同时实现用户可以查询各节点周围的环境参数,也可以进行人为的控制和干预等功能。

2.2路由器节点软件设计路由器主要是接收终端子节点发送的环境数据,并在接收后对其定时读取的环境参数进行临时存储。当协调器定时进行轮询监测时,便将临时存储的所有环境参数全部发送至协调器。值得注意的是,路由器在第一次上电加入网络时,需要设置和添加与其在同一温室的终端子节点,这样的设计有利于节点管理和控制。另外,路由器还具有的功能是根据协调器下发相应的控制命令来控制终端控制设备。

2.3终端节点软件设计低功耗的处理一直是各个系统设计所追求的重要指标之一,在软件设计中也注重使用低功耗。而终端节点最大的优点就是低功耗,可使用干电池进行供电。终端节点作为整个系统中环境监测最重要的节点,其主要功能是定时唤醒监测相应的环境参数,发送至协调器,待发送成功后再转入睡眠模式。

2.4LCD显示软件设计LCD液晶显示屏驱动通常需要完成以下四个步骤:LCD屏初始化、设置LCD屏显示坐标、获取点阵数据、字符或图像显示。

2.5上位机软件设计上位机软件设计部分主要包括数据库设计和用户管理界面设计。其中数据库使用Access2003,设计了环境数据表和报警阀值表二个表,将各节点采集到的环境数据以及其他分析数据保存在数据库中,以便日后查询和检索等。在用户管理界面采用VB编程语言进行了三个界面的设计,即登陆界面、管理设置主界面和历史数据查询界面。

3系统测试

本系统的测试主要是进行硬件和上位机软件测试,采集了温室内现场各环境参数的数值,经过分析处理并在上位机界面实时显示。本文对温室内温度、湿度两个环境因子的实测值和标准值进行了比较,得出温室内温度的数据误差绝对值都<0.5,湿度数据的误差绝对值都<2。由上述分析结果可以看出:该系统能够实时地对温室内的主要环境参数进行采集和监控,并能够实时又准确地在上位机PC界面上显示出来。

4以温度为例,设计温室智能控制算法

本文在上述测试成功的基础上,结合农业设施监测背景,针对温室环境特性提出了温度智能控制算法,用MATLAB软件中的SIMULINK仿真工具箱进行仿真和分析,得出本文设计的改进型智能控制算法超调量较小,没有振荡,可以实现自动控制和人工干预的方式来控制温室内的温度,满足智能控制的需求。

5结论