美章网 资料文库 卫星通信论文范文

卫星通信论文范文

卫星通信论文

卫星通信论文范文第1篇

MAC层有MAC-Idle、MAC-Shared、MAC-DTM、MAC-Dedicated四个状态[4]。它们之间的转换图如下。

1.1MAC-Idle状态MAC-Idle状态中不存在TBF,MES监视CCCH上子信道的相关传呼。MES可能采用DRX(非连续接收)监视CCCH。在MAC-Idle状态,上层可请求传输一个上层PDU(协议数据单元),这就会触发在PDCH上建立一个TBF并由Idle状态转入MAC-Shared状态,或者有可能通过RRC流程或者是RLC/MAC流程在DCH上触发建立一个TBF,MES会在完成建立DCH后由Idle状态转入MAC-Dedicated状态。

1.2MAC-Shared状态在MAC-Shared状态中,MES分配无线资源提供TBF用于在一个或多个PDCH上产生点到点连接。TBF用于在网络和MES之间单向传输上层PDU。在MAC-Shared状态,上层可请求传输一个上层PDU,这就会通过RRC流程在DCH上触发建立一个TBF,这将会使MES由MAC-Shared状态转入MAC-DTM状态。当上行链路和下行链路中的TBF都被释放时,MES返回到MAC-Idle状态。当重新配置PDCH到DCH的所有无线承载,释放完PDCH上所有的TBF并建立第一个DCH时,MES将会由MAC-Shared状态转入MAC-Dedicated状态。

1.3MAC-DTM状态在MAC-DTM状态MES将无线资源分配给一个或多个DCH和一个或多个PDCH。在MAC-DTM状态当所有在PDCH上上行或下行的TBF都被释放之后,MES进入MAC-Dedicated状态。在释放了所有的DCH之后,MES进入MAC-Shared状态。在释放了所有的PDCH和DCH之后,MES进入MAC-Idle状态。

1.4MAC-Dedicated状态在MAC-Dedicated状态MES分配无线资源以提供一个或多个DCH(专有信道)。在释放掉所有的DCH之后,由MAC-Dedicated状态转入MAC-Idle状态,当从DCH到PDCH(分组数据物理信道)的所有无线承载都被重新配置以后,MES将会在释放完所有的DCH并在PDCH上建立第一个TBF时由MAC-Dedicated状态转入MAC-Shared状态。

1.5MAC层对组呼的支持由于GMR-1系统的MAC层不支持组呼功能,所以要对MAC层做一些改变。我们设计了组呼模块,它和单呼模块是并列的关系。根据逻辑信道的映射和MAC层的状态来区分单呼和组呼两个模块通道。组呼工作在电路域,只跟DCH有关,跟PDCH无关[5]。所以在MAC状态机中加入两个状态,分别是MAC-Ready-Gcc(组呼控制)状态和MAC-Dedicated-Gcc状态。工作在MAC-Dedicated-Gcc状态下的主/被叫移动台,正常接收MACDATA,状态不变;在释放掉所有DCH后,由MAC-Dedicated-Gcc状态转入MAC-Idle状态。主叫移动台发起组呼时,RRC层利用原语参数配置MAC层状态;接收下行报文时,MAC层根据MAC-Dedicated-Gcc状态将消息递交给上层组呼模块。图4是主叫用户的组呼MAC转移图。被叫侧成员移动台根据接收到的NCH逻辑信道通知MAC层转入MAC-Dedicated-Gcc状态,工作在组呼模块。流程如图所示。图5是被叫成员移动台组呼MAC状态转移图。集群组呼中,网络要向多个成员移动台发送寻呼通知消息,因此需要采用广播的方式发送。我们增添NCH为组呼通知信道。由于系统资源有限,这里我们借用未配置的CBCH逻辑信道的位置来配置NCH逻辑信道,NCH逻辑信道的突发结构和调制解调编解码方式与CBCH逻辑信道保持一致。例如,如果BCCH指派CBCH使用第一帧,则NCH使用2、3、4帧,如果BCCH指派CBCH使用第1、2帧,则NCH使用3、4帧,余此类推。

2MAC层PTT竞争随机接入回退策略

当组呼讲话方释放组呼上行信道时,讲话方用户在上行DACCH(专有随路控制信道)信道上发送“UPLINK_RELEASE”消息,表明讲话完毕。当一个组呼中有几个用户要同时讲话时,会产生讲话权的竞争。组呼成员也可能有不同的优先级,这时候需要一种竞争策略来解决[6]。以下举例为组呼信道采用8时隙结构,编码的话音为2.4kbits/s。网络收到讲话方上行信道的“UPLINK_RE-LEASE”消息以后,在组呼信道的下行信道的DACCH上向所有组呼移动台发送“UPLINK_FREE”消息,表明上行信道空闲,允许新的讲话方使用上行信道。需要讲话的组呼用户,在下行信道上收到“UP-LINK_FREE”消息以后,采用直接强占和随机接入相结合的方式,在组呼上行信道发送“UPLINK_AC-CESS”消息,消息被封装在NT5上,直接抢占第一帧,随后的随机时间选择为T,回退的最大帧数为F,则T=40ms*F。考虑到2比特的用户优先级,让优先级高的用户有较大的概率竞争成功,设用户优先级为m,退的次数为n,回退的最大帧数为F,则F=(m+5)*n,其中m=1,2,3;n≥1。

当n=0的时候,四个级别的用户都抢占第一帧,此时F=1。用户优先级m和回退次数n与回退最大帧数F关系部分如表1所示。下面以用户优先级m=0为例,随后的随机时间选择为200ms(5帧),400ms(10帧),600m(15帧),和800ms(20帧)总计2s秒钟的时间争用上行信道,方法如图6所示。按下PTT移动台,在最初开始的一帧直接发送“UPLINKACCESS”请求,若有碰撞,随机占用之后的5帧之一发送“UPLINKACCESS”请求,若还有碰撞,随机占用后续10帧之一发送“UPLINKAC-CESS”请求,还有碰撞,随机占用后续15帧之一发送“UPLINKACCESS”请求,一直到,随机占用后续20帧之一发送“UPLINKACCESS”请求,任意帧周期,当下行链路由“UPLINKFREE”转换成“UPLINKGRANT”时竞争结束。任何一个按下PTT的移动台直接抢占最初的一帧发送“UPLINKACCESS”,在后续的2秒钟的时间内又可以竞争上行信道四次,竞争期间,如果收到网络在下行信道上发送“UPLINK_GTANT”,则竞争结束。

当网络成功收到一个“UPLINK_ACCESS”消息以后,在组呼信道的下行DACCH信道上发送“UP-LINK_GRANT”消息,用于告知竞争成功用户可以使用上行信道,其它用户不再进行竞争,直到再次收到“UPLINK_FREE”消息为止。这里我们考虑的是有竞争冲突时,保证优先级高的用户有较大的概率竞争成功。通过以上的描述,分析计算可得。从公式可以看出,优先级高的用户,产生冲突的概率低,这样就很好的保证了优先级高的用户有较大的概率竞争成功。假设一个优先级为0、3的用户,其竞争产生冲突的概率曲线如图7所示。从图中可以看出,优先级高的明显比优先级低的冲突概率小,当n的取值逐渐变大,p越小,当n为5时,概率几乎为零了。事实上,n值不能取很大,应为值越大,虽然冲突概率很小,但是从PTT按下到响应这个时延过大,这不是我们所期望的。所以这个退避算法兼顾了n值不能太大,冲突概率小。

3结语

卫星通信论文范文第2篇

1.1信号采集天线对准某颗通信卫星(如中星6A)后,移动车载站上的卫星信标接收机会收到一定强度的卫星信标,信标值的大小用来衡量对星的准确度。信标机提供串行通信接口,通过串口服务器,将串行通信做协议转换为网络通信协议,再通过一根网线与交换机连接,最终与控制计算机进行数据交换。设备连线后,在计算机上要进行虚拟串口映射,即把串口服务器的串口映射到计算机上,映射成功后,就可以把这些虚拟串口作为计算机上的串口使用,解决计算机本身无串口的问题。载波的发射状态是通过改变调制解调器参数来实现的,控制载波发射状态实际上通过控制调制解调器的发射状态继而达到控制载波状态的目的。调制解调器提供网络接口,通过交换机最终与控制计算机进行数据交换。控制软件实时监视信标机和调制解调器的工作状态,以此作为发送控制指令的依据。

1.2信号处理通过监控软件完成,为了不占用更多的主线程资源,监控软件分别建立两个独立的线程CThreadBeacon信标机线程类和CThreadModem调制解调器线程类,通过这两个线程的通信处理载波的关闭与开启。当确定天线进入遮挡区后,CThreadBeacon信标机线程根据当前的信标强度和调制解调器载波发射的状态,发送打开或关闭载波的消息给CThreadModem线程。CThreadModem线程主要有两个作用,一是读取调制解调器当前的参数,明确设备的工作状态,二是负责接收由CThrea-dBeacon线程发送过来的消息,根据消息的具体内容,向调制解调器发送相应的控制指令。

车载站在载波发射的行进中,如遇到高大的货车或小面积的建筑遮挡瞬间遮挡时,这时关闭载波是不必要的,故在信标机线程中,设定当遮挡超过10s后发送关闭消息给调制解调器线程,进而关闭载波发射。同样在离开遮挡区超过5s后发送开启消息给调制解调器线程,进而开启载波发射。具体流程见图1“载波自动关闭流程图”。

2实现过程

软件以visualc++6.0作为开发编译环境,在基于对话框的应用程序界面中,运用多线程串口通信编程和SNMP网络编程方法,利用线程间通信机制,完成载波自动关闭功能。软件启动时,建立CThreadBeacon线程并启动运行,运用串口通信编程,在InitInstance函数中,初始化串口参数,线程中使用定时器,频率为300ms,按照通信协议格式,以查询方式读取信标强度,经过适当处理后,以浮点数显示在监控界面上,范围是0~10,根据浮点数的大小,来判定天线是否进入遮挡区,如当信标强度小于3时,确定天线进入遮挡区,再以PostThreadMessage的方式发送消息给CThrea-dModem线程。建立CThreadModem线程,运用SNMP网络编程,在In-itInstance函数中,初始化调制解调器SNMP相关参数,创建两消息响应函数OnGetParam_Modem用来获取设备当前状态,和OnSetParam_Modem用来接收由CThreadBeacon线程发送过来的消息,根据消息的附加参数和当前调制解调器的状态,确定发送关闭或开启载波的指令。

3结语

卫星通信论文范文第3篇

1.1卫星通信CDMA技术卫星通信CDMA技术是根据用户需要和卫星的特点,用功率控制的手段实现导频信号的幅度变化,降低用户对星上功率的要求,减少多址干扰。卫星通信CDMA技术可利用多个卫星分集接收信息实现网络传递,大大降低了系统内耗和干扰的出现,改善了上星通信信息传输的可靠性。卫星通信CDMA技术具有优越的抗干扰性能、很好的保密性和隐蔽性、连接灵活方便等特点,使之成为卫星通信中关键的技术核心。

1.2卫星通信MPLS网络体系MPLS网络体系可以将IP路由的控制和第二层交换无缝地集成起来,是目前最有前途的网络通信技术之一。卫星通信MPLS体系结构分为用户层、接入层、核心层三部分,其中,用户层包括卫星手持移动终端、小型专用局域网用户、其他网络用户等。各结构和网络体系将信息有效绑定、标注和转发,实现卫星的通信功能。

1.3卫星通信的抗干扰技术卫星运行在外太空,电磁环境复杂,统一受到太阳风、强磁暴等空间环境影响,导致出现信息干扰和信息失真,卫星通信的抗干扰技术主要依靠卫星传输链路中不同的抗干扰设备和系统完成其功能,抗干扰设备和系统主要有DS/FH混合扩频、自适应频域滤波、猝发通信、时域适应干扰消除、基于多用户检测的抗干扰、自适应信号功率管理、自适应调零天线、多波束天线、分集抗干扰、变换域干扰消除、纠错编码和交织编码抗干扰技术等。在软硬件共同的作用下阻断电磁干扰、过滤杂波、屏蔽信号污染、实现程序监视等功能。

2卫星通信技术的发展趋势

2.1通信卫星体积的发展趋势通信卫星体积正在向大型化和微型化两个方向发展。其一,各国把通信卫星体积建造得越来越大,以便实现高灵敏和强处理能力。其二,各国推出小型通信卫星,用多颗小卫星组网构成卫星通信网络代替单颗大卫星,具有方便发射和成本低廉等优点。

2.2卫星移动通信技术方兴未艾卫星移动通信是指利用卫星实现移动用户间或移动用户与固定用户间的相互通信。随着频谱扩展、数字无线接入、智能网络技术的不断发展,卫星移动通信在向卫星个人通信方向演进,用手持机可实现方便接入卫星移动通信网,进行卫星移动通信。

2.3卫星互联网技术兴起将卫星通信网络转化为互联网中数据上下交换的链路,可将电话拨号、局域网等其他通信链路作为上行数据链路,还可以将下载和传输作为下行数据链路,利用卫星的特点实现地面随时连接互联网络。

2.4卫星通信向宽带化发展为了满足卫星通信系统用户对大数据量和高负荷的需求,卫星通信技术已向拓展直EHF频段发展,扩大频段的容量,大大减轻现有频谱拥挤现象,减少受电磁现象影响引发的信号闪烁和衰落,提高了卫星的抗干扰能力。使卫星通信部件尺寸和重量大大缩小和减轻,方便卫星搭载更多的通信设备。

2.5卫星通信光通信化发展卫星光通信是利用激光进行卫星间通信,达到降低卫星通信系统设备质量和体积,提高卫星通信保密性等目的。

3结语

卫星通信论文范文第4篇

自通信车改装后投入使用以来,通过近5年来各种规模的应急演练以及2010年玉树7.1级地震、2013年青海省海西州5.0级地震的实际检验,该应急卫星通信车在使用中暴露出来很多的问题,总结情况如下:(1)原有车内设备机柜设计及布局不合理,使得各设备的供电及信号之间产生交叉干扰。其中部分通信设备的散热条件无法保证,电力线路杂乱无章。在实际使用过程中,不仅存在故障排查困难,同时还有因用电安全引发火灾等事故的重大隐患。鉴于上述情况,对机柜内设备进行了重新布局,只保留与卫星通信相关的通信设备及供电设备,将部分周边设备进行下架处理。(2)原车所用的视频编解码器及网络交换机等设备,经与原厂家联系后,确认部分产品已停产,另有部分已无法提供维修必须的备品备件。因而通过对此类设备进行维修,使其具备通信功能的做法不可行。因此更换掉原有的解码器,采用时下主流的视频会议设备及网络交换机,以确保应急通信车与指挥中心视音频信号的安全畅通。(3)原车卫星设备的配置不合理。该车是在原有箱式卫星便携站的基础上进行了改进,将便携站的全套设备安装于改装后的依维柯厢式货车内,天线部分做了车顶安装。由于车顶天线与功放采用软波导连接结构,长期风吹日晒会产生老化磨损。破裂后的波导产生微波信号泄漏,造成通信质量下降的同时,对现场操作的工程技术人员也会产生人身伤害。对此采取的策略是:平常不使用时对车辆加盖防尘遮雨罩,定期检查软波导的连接结构,如发现问题及时联系厂家更换或维修。(4)卫星系统对星时间长或无法正确对星。由于原有卫星系统未配备频谱仪或卫星信标机等对星设备,使得自动对星动作完成后无法对目标卫星的正确与否进行有效判定。因而,往往造成对不上或对错星的情况,无法实现正常通信。基于上述情况,对现有设备进行优化。其中,对已停产或无法提供维修服务的设备进行更换;部分尚能使用的设备作为现有链路的备份设备;使原有的单通路卫星应急系统升级成为具有一定抗灾能力的1∶1备份的卫星应急通信系统。此外,在寻星过程中尽量避免指挥车周围有高层建筑物、树木枝叶等阻碍,以免造成卫星波速回波反射[1]。(5)整车配重不合理,集成后车辆右后部偏重,影响车辆行驶的平稳性。因此,在满足基本通信功能的前提下对车厢设备,车顶卫星系统和后舱供电设备重新合理布局,调整车辆的平衡性。

2对策探索

目前,卫星通信技术是我国大范围区域内应急通信的主要技术手段,包括VSAT技术系统、BGAN技术系统。短波通信技术在地震应急救援现场的局域通信中也有很大的作用。这类应急通信系统应当具有高信噪比、大容量、高稳定性、全天候、盲区小、抗干扰、多通道、低功耗、小型便携、高机动性等基本特性[2]。在目前技术水平条件下,应进一步完善通过多种技术系统集成的震后应急通信系统,以解决地震后初期不同情况下地震现场与后方指挥中心的通信。

2.13G技术的应用据科学统计,不同震级的地震因为释放能量的大小不同,对震区内的通信环境的影响也有不同的差别。比如,Ms5.0~6.0级地震发生后,震区大部分地面网络或3G网络受损普遍轻微,Ms6.0~7.0级地震对地面网络或3G基站的破坏一般发生在高烈度区,而Ms7.0级以上的地震发生后,地面通信设施基本不可用[3]。应急通信车应根据地震现场的实际情况选择不同的通信方式,在地面通信设施受损较小的情况下可依托地面网络或者3G作为信道开展视频会议、语音通讯、数据传输业务,极端条件下使用VAST卫星网络,这样可大幅度提高地震应急通讯效率。3G网络与VAST卫星网络相比传输速度较快,下行速度峰值理论可达3.6Mbit/s,上行速度峰值也可达384kbit/s。国内支持国际电联确定3个无线接口标准,分别是中国联通WCDMA、中国移动TD-SCDMA、中国电信CDMA2000。WC-DMA以其技术成熟、终端类型多、速率高、网络覆盖好等特点在3种3G网络中具有明显优势,因此可以采用WCDMA技术作为主用3G通信技术,实现应急通信车与指挥中心的3G通信,CD-MA2000或TD-SCDMA可作为备用的3G通信方式。

2.2短波电台的应用短波通信属于独立自主通信,不依赖其他有线和无线通信手段都必须具备的网络、传输线路、中继体和建筑等基础运行条件,抗毁能力最强,是实现中、远程无线联络的基本手段[4]。从点对点直通距离看,短波是所有无线通信方式中距离最远的一种无线通信手段。另外,短波通信设备简单,可以根据使用要求进行固定设置,也可以个人背负或车载安装进行移动通信,组网灵活,实时性好,特别是在救灾初期常常是主要依赖的通讯工具。因此,我们可以建设一套短波通信网络,由车载电台、便携式电台组成。车载电台用于组成指挥所通讯枢纽或作移动通讯使用,选择使用鞭形天线或双极天线,这样可以保证应急通信车在一般行进速度时正常通信,便携式电台具有体积小和重量轻等特点,一般采用鞭形天线,利用地波进行近距离通信,主要用于应急通信车无法抵达的陡峭山地灾害现场,由应急人员背负便携式电台进入地震现场,保障通讯联络,实现无盲区通讯。为了解决短波通信网与其他通信的融合问题,同时提高整个短波通信网络的可靠性,必要时可以配备多网系融合设备,通过该设备可以将短波无线通信和有线通信、卫星通信及超短波通信等通信手段进行融合,通过其他制式的承载网络,实现对短波系统的延伸和扩展,从而可以大幅度提高通讯效率[5]。

3结语

卫星通信论文范文第5篇

1.1卫星通信具有众多的优势(1)电波覆盖地域比较宽广。(2)传输路数多,通信容量大。(3)通信稳定性好、质量高。(4)卫星通信不受地域限制,运用方式灵活。

1.2卫星通信的一些劣势主要的方面有:(1)延迟现象比较常见。(2)传播过程中由于信号较差,容易出现信号中断的现象。(3)终端产品的选择面不广。

2卫星通信产品的多址体制方式的选择

卫星通信由于具有广播和大范围覆盖的特点,因此,特别适合于多个站之间同时通信,即多址通信。多址通信是指卫星天线波束覆盖区内的任何地球站可以通过共同的卫星进行双边或多边通信。目前比较常用的两种卫星通信多址体制方式为:TDM-FDMA(时分复用-频分多址)和MF-TDMA(跳频-时分多址)。(1)多址体制方式一:TDM-FDMA。(2)多址体制方式二:MF-TDMA。

3卫星通信在铁路应急通信中的应用网络架构

有时候会因为遇到突发性、严重的自然灾害、人为因素导致其他所有通信手段无法使用时,而应急指挥中心又急需现场相关资料,这时就可以利用卫星通信覆盖区域广和快速部署的优势将信息发送到应急指挥中心。常规卫星系统现场接入方式可以分成两种:一种是车载型,一种是便携型,这两种卫星接入方式可以视现场情况而定。而对于铁路应急通信人员来说,以上两种接入方式均可以采用,但在到达应急现场后,还需要在现场对卫星接入设备进行开设,考虑操作使用人员的技术水平和熟练程度,选择自动对星的车载或便携卫星设备就显得非常的方便,可确保快速建立通信链路保证通信。

事发现场人员要将信息传送到应急指挥中心,在铁路应急卫星通信系统网络建设时,可根据实际情况需要,按下文所述三种方案进行建设,如图1所示。

方式一:在中国铁路总公司应急中心建立卫星地面通信站,这样就可以通过应急指挥中心收发数据,再通过地面的有线网络传输到需要数据的各路局应急指挥中心。这种方案对于现代网络资源的应用比较充分,但在遇到一些突发情况时,数据可能无法通过地面有线网络传输到需要数据的各路局应急指挥中心,这就导致可能会出现一些无法预知的情况。

方式二:在各个路局的应急指挥中心建立卫星通信站,这样就可以在发生状况时迅速的将数据发送到各路局的应急指挥中心,同时各路局也能够及时的下达指令,进行相关问题的处理。这样做的好处是各路局应急指挥中心能及时掌握应急现场状况,但不利的是其建设费用将会大大增加。

方式三:在中国铁路总公司应急指挥中心以及各路局应急指挥中心均设置卫星通信站,这样一来,无论发生什么灾害情况,各路局应急指挥中心与中国铁路总公司应急指挥中心都可以实时掌握事发现场情况。这样做的好处不言而喻,但其建设费用也无疑会昂贵很多。

4结束语

卫星通信论文范文第6篇

卫星信号复用模块的功能是:将船载北斗收发设备与其原配的控制终端设备进行分离;将信号根据不同策略复用为两路数据信号;提供与数据采集终端的接口。图1给出了卫星信号复用模块与系统的其他部分的连接的方式。其中的北斗卫星通信天线完成北斗信号的收发、导航信号的接收以及双向数字接口的信号交互;北斗控制终端是国内北斗星通公司开发的多用途控制设备,其功能涵盖了导航、轨迹录、报文收发和紧急情况下的报警呼救等;数据采集终端是本系统中的采集数据的收发系统,利用人工输入海洋资源数据,并通过卫星信道将数据发回北斗整列控制中心。卫星信号复用模块是各个模块的通信中枢,完成设备对信道的申请和释放,并且为各个工作子系统供电,系统对其工作稳定性和可靠性提出了较高的要求。图2给出了卫星信号复用模块的内部结构图。其中RXD_T和TXD_T分别表示RS232电平的北斗卫星天线的数据收发信号;RXD_K和TXD_K表示北斗控制终端的RS232数据收发信号;RXD_C和TXD_C表示数据采集终端的数据收发信号。其结构比较简单,但是在前期的设计和测试中发现了一系列可靠性问题。长时间地将数据采集终端以在线方式工作会造成卫星天线或者控制终端无法收发数据,因此在设计上采用了回馈电源模式,即当采集器不工作时,切换电路工作于信号直接切换模式,信道不受数据采集器控制。同时还发现当数据采集器不工作时,地线连接会造成数据串扰,所以在设计中采用了地线切换模式,当采集器不工作时将地线断开。为了进一步提高可靠性,降低干扰,信号切换没有采用有源的电子器件,而采用了电磁式继电器,当采集器不工作时系统的信号处于机械切换模式。采取上述措施后,系统无响应和数据通信失败的现象基本没有出现。

2控制终端设计

控制终端是数据采集人员的操作设备,其功能是输入采集的数据并且将数据发送。控制终端采用了ARM9架构的S3C2440作为核心处理器,利用自主开发的嵌入式操作系统,采用面向对象技术进行开发。其设计的模块结构图见图3。S3C2440核心板上有SDRAM与NANFLASH,分别用于应用程序的执行和程序的存储;北斗控制终端接口包含了北斗天线的串行控制口和电源;智能液晶显示接口通过串口2将核心板的显示控制数据传递给智能液晶模块;阵列式扫描接口读取操作人员的输入键值用于数据控制。控制终端的软件结构图见图4。扫描键盘处理模块驱动阵列式键盘,读取用户的输入键值,并提交系统处理;智能终端GUI模块负责用户的图形界面处理,主要功能包括控件界面绘制,事件响应以及消息传递;GPIO电路驱动模块用于控制卫星信号复用模块的北斗信号切换,以及北斗系统电源的管理;伪汉字空间的转换模块负责将采集到的数字信号映射到GB2312的汉字空间,以适应北斗卫星通道的数据传输;稀疏数组压缩模块解决了北斗数据包短,而采集数据量较大的问题,通过自定义的无损压缩算法,将采集的数据高效率压缩以适应北斗数据通道的特点;北斗数据编码解码模块负责将处理好的数据以北斗规定的格式编码和解码;系统参数管理模块负责管理存储在智能终端中的系统参数,以配置不同的应用方案。

3伪汉字编码方案

北斗卫星通信系统对用户的级别做了严格限制,民用的北斗运营商普遍采用了内容过滤程序,即当发现传输内容为GB2312国标码时,允许数据通过,当发现传输内容为非GB2312国际码时不允许数据通过。数据采集的数据格式不符合GB2312编码标准,因此在系统设计上遇到了数据无法传递的困难。为了解决上述问题,设计了伪汉字编解码方案。其基本思路是:编码时将原始的数据流进行分解,分配到多个汉字空间,解码时从汉字空间提取出数据流,并且将拆分的数据进行合并。GB2312是北斗采用的汉字通信系统,用于民用终端的数据发送。GB2312中每个汉字由2个字节组成,第一个字节的范围为176~247,而第二个字节的范围为160~254。因此第一个字节的有效编码空间为0~71,而第二个字节的编码空间为0~94。为了简化算法,将两个字节的编码空间都设置在0~63即2的6次方范围内。实际上将数据看成一个Bit流,将8Bit为单位分解为6Bit为单位,其示例图见图5。图中上方的8Bit的3个字节被看成24Bit的数据,在图中部分解到4个字节,每个字节为6位,高2位补零。实际上上方的数据与中部的数据从Bit流看来都是24Bit。得到4个字节的6Bit数据后,在每个字节上加上176得到图5中下部的数据,即伪汉字编码。该编码的范围位于GB2312的范围内,可用于北斗信号的数据传送。解码的过程与编码的过程相反,不再叙述。在编码的过程中还会遇到实际问题:图5中演示的情况属于比较特殊的情况,输入的数据的字节数量是3的倍数,输出的字节数量为4的倍数。现实的数据流不一定满足上述要求,例如如果输入的数据是4个字节,输出需要的字节数是6个字节;如果输入的是5个字节输出的需要6个字节。这样会给编解码带来巨大的困难。为了简化编解码,可以将数据进行特殊的处理,办法是在传递的数据中增加一个数据的长度指示,并且将数据进行整数倍拼凑。其过程见图6。在数据的头部附加了一个长度指示器,其作用是当收到的数据后部附加的有PAD时可以将原始的数据提取出。PAD是附加在有效数据后面的无效数据,PAD的数量根据原始数据长度变化,其数量为0~2个。数据扩展的原则是将数据的整体长度扩展为3的倍数。这样得到的伪汉字编码的数据长度就是4的倍数,如此扩展的目的是有利于编码和解码。

4北斗数据通讯阵列与系统整体架构

由于北斗系统是军民两用系统,并且随着用户数量的增加,通信带宽日益紧张,为了保障系统中的高级用户权限,对用户的收发信息的频度做了限制,平均一分钟才能发送一条信息。而对于接收信息的频度却没有限制,所以信息的接收相对较快。由于北斗的信息通道采用了无验证的协议,发送方无法得知接收方是否成功接收数据。为了保证通信的可靠性,本数据采集系统对北斗通信协议进行了改进。具体方法为:发送方发送消息后,从系统中获取一个随机变量用于产生延时,如果在规定的时间长度内没有收到对方发来的验证数据就继续发送,直到成功收到接收方的验证数据报。采用上述协议后,系统通信的可靠性得到了提高,但却给北斗的通信系统带来的严重负担。特别是随着采集系统数量的增加,控制中心的通信负担日益加大,采集终端数据发送的成功率也大幅下降,严重影响了系统的正常工作。为了提高系统的数据吞吐率,利用北斗系统收发速率不平衡的特点设计了北斗卫星阵列,采用了单点接收设备以及多点发送的通信模式。当接受北斗设备收到采集系统来自海上的信息后,根据负载平衡的算法,从发送阵列中选择一个空闲设备完成数据发送。如果没有空闲设备就根据负载最少原则获取北斗发送设备并将数据压入发送消息队列。采用北斗阵列和负载平衡算法后,数据的吞吐率提高,系统的反应速度加快,也提高了采集设备的用户体验。系统的整体结构见图7。多个北斗设备通过统一的网关接入北斗应用服务器,相关的控制软件运行在其上,负载解析和实现北斗设备的控制协议,系统的负载平衡以及将采集的数据回写到数据库服务器。系统决策服务器上运行的软件负责解析数据,分析相关的资源信息,以及GIS的控制信息。Web服务器对通过VPN网关的远程用户提供了数据访问服务,由于数据涉密,对不同的用户采用了硬件加密的认证模式,数据的传输也经过了加密通道的处理。

5实际应用

该研究项目经过多年的研发已经在海洋渔业资源、海洋生态和海洋安全方面得到广泛应用。为了分析海洋渔业资源,在本终端上设计了渔业捕获实时报告系统。具体方法是针对渔业捕捞的的各种船型,每种船型选择常见的50种鱼类,将鱼类的名称和图片写入终端。船员在捕捞结束后利用本终端将各种鱼类的产量通过北斗发送给控制中心。其中的数据不仅有渔获产量,而且还有捕捞的时间和地点,控制中心将数据记录入数据库后,结合相关的港口渔获数据,以及海洋卫星遥感数据,可以分析海洋鱼类的巡游规律,并且指导渔业生产。渔业管理部门也可以了解海洋整体上的生产情况,以便合理地进行生产管理。目前已经在南海生产渔船上安装了近300套设备,大部分设备工作正常。图8给出了第二代渔获采集终端实物,图9给出了GIS软件上的安装了设备的渔船的作业分布图。该系统还用于渔场预测,结合卫星遥感信号得到的温度、洋流和叶绿素等相关因素,根据终端传回的数据,分析渔场并将得到的预报信息通过控制中心发送到终端上,从而指导渔业生产,减少资源消耗,提高经济效益。图10给出了渔场预报的样图。该设备还用于增值放流工作的检测:为了保证渔业资源的稳定,需要人工放流鱼种。为了跟踪放流鱼种的生长和巡游情况,放流前在部分鱼种上留有标志,并且在放流前将标志与鱼种信息记录在数据库中,当鱼被装有终端的渔船捕获后,船员将鱼的参数和标志编号输入终端,通过北斗发回控制中心,相关的放流数据就可以进入软件分析,从而得到放流的效果评估。目前本终端还具有了天气预报信息的发送以及他国渔船越界捕鱼事件报告的功能,可以在渔业安全和保护国家渔业资源等方面发挥作用。

6结束语

卫星通信论文范文第7篇

1.1舰队终端舰队终端主要包含3部分功能:接收来自RS232接口的信息,通过信息传输模块传输数据和图像信息,包含GIS终端访问GIS系统。经过多年的研究和开发,海上图像采集系统[3]已经逐渐成熟,并被如UTM这样的机构广泛使用。类似于海上图像采集系统、雷达等这样的装置,能够提供船舶和舰队的位置、航向、航迹等多种信息,并通过相应的协议,如RS232,传输给部署于船舶之上的系统终端。通常情况下,这类信息分为2种:一种是较为简单的数据信息,如航速、经纬度等;另一种是较为复杂的图像信息,如船用摄像机拍摄的图像等。对于数据信息来说,使用UDP协议传输较为合适,该协议使用较为简单,可以降低舰队终端的实现复杂性,同时由于其无连接的特性,能够更好的适应舰队的移动特性。而对于图像来说,其发送和接收分别采用wget[6]和rsync[7]应用接口,这2种接口被广泛应用于传输船舶摄像机采集图像的传输,相比与其他传输模式和接口,其更加适合于图像更新等任务。GIS终端具有较大的灵活性,当前的GIS应用有多种形式,因而GIS终端可以使用专用的系统应用,采用加密信道访问专门的GIS系统;也可以使用通用的个人计算机,通过访问Web端的地理信息系统查看舰队信息;甚至可以使用智能手机配合相应的APP,实现对于GIS系统的访问。则可以看出,本文提出的系统与传统的专用系统相比,采用外部、成熟的GIS系统,大大降低了实现的难度以及使用的成本。

1.2卫星通信网实现舰队终端与卫星通信网的互联,主要采用甚小口径天线地球站(VSAT)实现,通过VSAT能够将舰队终端接入SEAMOBIL和HISDESAT卫星通信网络,这2种卫星通信网在海事、通信等领域,均已得到广泛的应用,具有大量的地面卫星站,并覆盖了除两极之外绝大多数的地球表面,如图2所示。VSAT通信采用C波段或X波段,相比与国际海事卫星(INMARSAT)终端,VSAT能够提供更好的数据传输容量。同时INMARSAT采用舰队船舶共享连接的方式,为每艘船舶提供的带宽有限,而VSAT则采用的是专用信道,能够提供给船舶和舰队更加稳定的传输信道和更高的传输质量。另外,与INMARSAT相比,VSAT具有更低的获取成本和使用成本,因而使用VSAT具有更好的经济性。通过以上介绍的卫星通信网,使得舰队终端和岸基服务器之间能够建立持久稳定的网络连接,从而可以提供实时的、高信息刷新速率的数据服务。

1.3岸基服务器岸基服务器是整个系统的核心,由图1显示的岸基服务器与舰队终端之间的交互过程,可以看出整个系统是一个中心化的结构。岸基服务器共有3个主要功能:接收卫星通信网传输的数据和图像信息;根据接收到的信息融合并计算生成KML文件;通过HTTP协议栈[8]将KML传输给相应的GIS服务器。根据第1.1节的叙述,岸基服务器具有2种不同的数据接收接口,其中UDP协议栈负责接收舰队终端传输的数据信息,而“rsync”应用接口负责接收传输的图像信息。这2种接口与舰队终端接口类似,均可使用软件实现,并已得到广泛应用。岸基服务器中的KML文件产生模块是岸基服务器的关键功能,其能够根据实现定义的KML文件格式,和各种信息的内容,将信息嵌入KML文件模板中,产生正确可用的KML文件,进而通过HTTP协议,将其传输给绑定的GIS服务器。

2KML文件的格式与生成

KML文件时当前GIS系统广泛使用的地标文件,由于KML由XML发展而来,因而KML文件的格式和定义方法集成了XML的特点。

2.1KML文件的格式与一般基于XML的语言类似,其广泛采用标记定义各种数据块。其主要含有以下几个部分:位置数据、模型数据、航迹数据、图像数据和字节数据。各个部分的格式如下所示。通过以上的KML文件格式,可将不同类型的信息嵌入其中形成KML文件。

2.2KML文件的生成KML文件生成的过程,就是根据KML文件格式,不断分析与填充相应数据的过程[9]。KML文件生成的流程图如图3所示。KML文件的生成过程应遵循以下步骤:首先,KML文件产生模块需要根据信息来源判断和识别船舶的信息;然后根据导航信息生成基本的数据,之后再根据信息中包含的媒体信息和其他信息[10],对KML文件进行完善;最后形成完整的KML文件,并使用HTTP协议进行传输。

3系统实现与仿真

最后,本文在OPNET中构建模拟的卫星通信网,并仿真实现了舰队终端和岸基服务器,模拟了舰队终端与岸基服务器之间的交互过程,并利用GoogleEarth证明了生成KML文件的正确性。在OPNET中的实验拓扑图如图4所示。

3.1系统功能实现通过舰队终端产生的信息,仿真宽带卫星通信网络,UDP流量约为25~36kb/s,持续时间约为20s,丢包率小于1%。而传输图像数据的速率约为80~120kb/s,持续时间约为15s。根据以上仿真可知,本系统中采用的通信接口和链路,其带宽能够满足系统信息的传递以及更新需求。按照第2.2节中方法,生成KML文件,并在GoogleEarth中导入,生成的实时监视状态图,如图5所示。通过图5可看到,KML文件可以在通用的GIS系统中得到显示和应用,不仅包含了船舶的位置、航向等,还能够根据需求显示详细的航迹信息及其他信息。

3.2负载测试在系统的实际使用过程中,由于本系统结构采用中心化的结构,因而岸基服务器将承担较大的负载。本文将利用图4所示拓扑,继续对岸基服务器的工作负载进行测试,主要测试内容是KML文件产生时,对服务器资源的占用。在仿真中,采用通用X86计算机模拟服务器,采用Corei3双核处理器,4G内存,运行Win7(64bit)操作系统,采用软件实现KML产生模块,设计各个舰队终端的信息到达服从泊松分布,在第3.1节中研究的信息通信负载下进行测试,最终得到CPU的占用率如图6所示。通过以上测试结果可知,在实际使用过程中,当带宽满足系统传输要求时,CPU的占用率约为16%~22%,证明岸基服务器能够满足本系统用户的实际需求。

4结语

卫星通信论文范文第8篇

本系统采用LabWindowsCVI来进行设计与开发,系统软件框图如图2所示。软件系统由监控界面、参数设置模块、数据采集模块、程控命令模块、数据处理模块、图像显示模块和数据存储模块组成。各模块功能通过LabWindowsCVI进行模块化设计。

计算机通过GPIB通信接口对AV4033的功能控制是通过程控仪器标准指令来实现的,程控指令是可以对频谱仪进行远端控制的一组特殊格式串,包括仪器设置、通道配置、数据扫描方式、控制输出、读取数据、状态报警、接口设置等指令集。这些指令的发送均是字符串形式,所有的频谱仪命令都必须符合特殊的语法规则,在应用高级语言进行编程时,程控指令一般是作为一个独立的参数在调用函数中出现,这类针对远程控制的函数随GPIB接口和采用的高级语言的不同而不同,但其程控指令是相同的,AV4033系列频谱仪的语法命令图如图3所示。本文利用程控指令和频谱仪进行通信时,选择LabWindowsCVI自带的GPIB函数库,可以方便地进行程控命令发送和数据读取操作。

2应用举例

卫星固定通信台站天线口径大波束窄,对天线伺服系统的自动跟踪性能要求较高,为确保通信效果,需定期测量卫星天线系统的自动跟踪性能,传统的测试方法需用频谱仪在射频方舱内测试,且测试结果保持和记录都不方便,利用本系统可以方便进行远程测试,而且可以将测试结果保存在数据存储单元中,方便后续查询和参考。卫星天线跟踪性能测试流程如下:(1)调整卫星天线使其对准通信卫星;(2)在监控主机上按下述过程设置频谱仪;a)按卫星信标频率设置频谱仪中心频率,设置SPAN为0到100KHzb)根据信标信号的电平变化范围设置Sacle/DIV,以使测量过程中的载波电平变化始终落在频谱仪的可显示电平范围内c)根据信标频率稳定度,选择尽可能窄的RBWd)根据载波的峰值频率和功率,调整频谱仪的中心频率和参考电平e)利用键盘调窄SPAN,重复4f)重复5,将SPAN调整到最小g)将SPAN置0,使载波显示谱线作水平运动h)输入扫描时间,确定扫描长度(3)用手控方式调偏卫星天线的方位角和俯仰角,频谱仪显示谱线的电平将随天线偏离卫星而下降(4)启动天线自动跟踪功能,观察卫星信标电平随时间的变化,记录自动跟踪天线的对星过程以及跟踪速度和精度(5)存储记录数据,重复3、4步骤,多记录几次测试结果,分析卫星天线自动跟踪性能。

3结束语