美章网 资料文库 实验设计论文范文

实验设计论文范文

实验设计论文

实验设计论文范文第1篇

实验目的:在类似船舶摇晃、液货装卸等外来扰动引起的液舱液货晃荡条件下,结合油品在整个液货舱中的传质过程,研究油品蒸发及透气孔处油气的排出规律。在影响油品蒸发传质速率的其他因素(温度、黏度和密度等相关液货特征参数)相同的情况下,将重点考虑液货舱液相厚度(即液货装载率相同)与晃荡强度对油品蒸发、油气传递的影响,以探寻油气的蒸发排放规律。实验内容:构建实物模型实验,研究货舱液相厚度与晃荡强度对于油气排放的作用规律。根据研究目标,基于研究对象的特征,设计两组3种实验方案。第1组为晃荡实验:一是考察在相同液相厚度、不同晃荡强度下透气浓度的变化;二是考察在相同晃荡强度、不同液相厚度下透气浓度的变化。第2组为装货实验:考察在装货过程中(即液相厚度与装货形成的晃荡强度同时改变),透气浓度的变化。

2模型实验设计与流程

2.1模型设计制作及仪器设备

2.1.1模型舱的设计制作综合参考现有大型油船结构尺寸资料,选取单个边舱模型原型尺寸:长25.7m、宽16.1m、舱深18.9m,舱容约为7820m3。根据几何相似原理建立一个约为单个边舱1/40的模型(模型尺寸为:640mm×400mm×470mm,容积约120L)。模型舱使用有机玻璃制成,侧壁留有一个注油孔A(半径r=8mm)顶部留有一个透气孔B(半径R=12mm)和一个仪器固定孔C。同时,为了便于数据的分析与处理,整个模型舱被分为3个区:液相区、气相区和气液边界层(气液边界层是扰动的,这里取平均值)。液相区主要是液态油品,高度用L表示;气相区主要是油气与空气的混合气体,高度用V表示;气相区与液相区的交界处称为气液边界层;整个模型舱的深度为H。

2.1.2液舱晃动模拟平台的设计制作液舱晃动模拟平台是用来模拟油船的油舱受风、浪影响而晃动的实验设备,包括了传动和控制两部分。该装置利用一个液压缸提供推动力,使工作台左右摆动以模拟船体在海上的晃荡。在单片机输入指令后,信号经过数模转化器传给电源,以改变电源的输出电压,进而改变伺服阀两端的输入电流,然后在阀内改变阀芯的开口大小,控制回路的输出流量和压力,从而控制液压缸的运动,最终保证液压缸的运动速度在设计值附近,使工作台产生预期的晃荡效果。

2.1.3仪器设备主要实验仪器:一台计量泵,用于模拟加油;一套液舱晃动模拟装置,用于模拟油船在海上航行时的晃荡情形;一台DR70C系列智能线式红外VOCs检测仪,用于实时记录透气孔处排出油气的浓度;一台计算机,用于存储浓度检测仪记录的数据;两台高清摄像机,分别从正面和侧面记录整个实验过程中模型舱及液相表面的变化。

2.2晃荡实验设计

对于第一组实验,由于液相的晃荡强度与液相厚度及外来晃荡强度有关,因此,为了研究不同液相晃荡强度对透气孔处排出油气浓度的影响,设置7种气液比、5种晃荡强度的交叉晃荡实验。7种气液比分别为1%、3%、5%、25%、50%、75%及95%,5种晃荡强度分别为a(a=0)、b、c和d、e,共计进行35组晃荡实验。其中,外来晃荡强度通过调节液舱晃动模拟平台负载大小来施加。a=0,即晃荡发生装置关闭,液相处于静置状态;b为整个量程的20%;c为整个量程的40%;d为整个量程的60%;e为整个量程的80%。

2.3装货实验设计

对于第2组实验,由于不同的装货速率代表着不同的液面上升速率及液相扰动强度,因此,为了研究不同装货速率对油气产生及排出的影响,共设计7种装货速率:0.38L/min、0.88L/min、1.38L/min、1.88L/min、2.46L/min、2.96L/min及3.46L/min,其装载率都是0~95%。其中装货速率1.38L/min是根据实际油船装货速率按欧拉相似准则(压力差为注油孔内外油品的压力差)得到;装货速率0.38L/min、0.88L/min和1.88L/min、2.46L/min、2.96L/min和3.46L/min是结合计量泵的量程及最小刻度的实际情况,从而设计出0.5L/min装货速率间隔的速度。

2.4模型实验流程

晃荡实验:将浓度传感器安装在透气孔处,将模型舱固定在晃荡发生装置的工作台上,分别调节油品的装载率和模拟平台的晃荡强度,依次进行实验,通过计算机分别记录透气孔处排出油气的实时浓度。每次实验前,模型舱内都充满干净空气,舱内压力为标准大气压。实验时通过空调系统控制环境温度为26℃。装货实验:将油品通过计量泵再经过加油管注入模型舱内,浓度传感器安装在透气孔处,依次进行实验,用计算机分别记录透气孔处排出油气实时浓度。每次加油实验前,模型舱内都充满干净空气,舱内压力为标准大气压。实验时用空调系统控制环境温度为26℃。

3部分实验结果展示

3.1晃荡实验

油品装载率25%(图6),静置时间6h。在静置条件下,当装载率为25%时,透气孔处排出气体浓度规律:前600s左右,透气孔处排出气体中油气体积分数为0;600s后,排出气体中油气体积分数在短时间内迅速上升至60%,随后曲线斜率变小,排出气体中油气体积分数增加速度变慢,直至达到饱和,即油气体积分数Csat=81.6%。形成这种现象的原因:前600s左右,排出的气体主要为原来模型舱中的空气,因此排出的油气体积分数为0;600~2500s后,在模型舱气相区中,由于油气浓度差很大,油气的蒸发扩散非常快,致使透气孔处排出油气的体积分数迅速增加;2500~5000s,随着气相区内油气浓度差的减小,油气的蒸发扩散变慢,造成透气孔处排出油气的体积分数增加变慢;5000s后,气体的蒸发扩散慢慢接近充分,使得舱内油气浓度达到饱和,排出油气的体积分数不再增加。

3.2装货实验

加油速度1.38L/min(图8),加油时间4957s。在装载率达到70%之前,透气口排出气体中油气体积分数处于较低水平,约35%,且上升速率较慢。当装载率为70%~95%时,排出气体中油气体积分数快速上升,最后达到90%,接近饱和(图9)。该实验结果与文献[4]实船所测装货过程中透气孔排气规律相同。形成这种现象的原因:在整个加油过程中,从液面蒸发出油气分子的自然扩散是从高浓度处向低浓度处进行,这使得舱内的油气浓度呈现分层现象,越靠近液面,油气浓度越大。在装载率到达70%之前,主要是进行油气分子的自然扩散,聚集形成油气浓度层。同时,舱内空间较大,油气的对流效应较弱,油气从产生至传递到透气口有延迟效应,因而使该过程中透气口排出的油气体积分数较小。随后,装载率从70%上升至95%,随着液面上升,气相区体积缩小,对流效应越来越明显,延迟效应越来越弱,并且此时油气分子自然扩散也更加充分,因而使透气口排出气体的体积分数上升得越来越快,体积分数值越来越大。

4结束语

实验设计论文范文第2篇

实验前要求学生完成实验课题、实验材料、实验用具的选择以及实验步骤设计(以填空的形式)。

(1)分组与合作:将学生分成4个大组,每个大组选定1个课题,每个学生独立进行实验。思考1:如此分工与合作的意义?(重复实验,减少误差,使数据更准确。)

(2)实验课题:。思考2:你所选定的实验的自变量与因变量各是什么?(如课题“探究光照对气孔开闭的影响”,自变量为是否光照,因变量为视野中完全开放、半开放以及关闭的气孔数)。

(3)设计一张表格用于记录个人的实验结果。思考3:如何使所得数据更清楚且更有说服力?(把所统计的气孔数转换成百分数)

(4)实验材料:。

(5)实验用具:镊子,滴管,载玻片,盖玻片,吸水纸,培养皿,,记号笔,密闭纸盒(营造黑暗的环境)等。

(6)实验步骤:在载玻片中央滴1~2滴溶液。取蚕豆叶片,从背面向内折叠,在折叠处轻轻撕拉,折断处有无色的表皮(下表皮)。用镊子夹取一小块表皮,置于载玻片中央的液滴中展平,盖上盖玻片,制成临时装片。将制好的临时装片置于低倍镜下观察并记录。

(7)观察记录:将观察到的结果记录到表中。

2结果分析与讨论

(1)显微镜下表皮细胞与保卫细胞的颜色有何区别?两者在结构上又有什么不同?

(2)请设计表格,用于记录全组同学的实验结果。

(3)根据表格中的数据,用柱形图呈现实验结果。

(4)全组学生能根据实验结果,为全班学生出一道实验设计的练习题吗?(填空题或简答题)

(5)综合全班实验结果,可得出什么结论?对农业生产有什么指导意义?

实验设计论文范文第3篇

笔者结合南开大学信息安全专业实验室的软硬件环境和已有的实验方案,设计了僵尸网络分析实验环境,其基础架构如图1所示。在上述硬件环境的基础上,搭建了自动化、系统性的僵尸程序监控分析平台,其结构如图2所示。该分析平台运行在Ubuntu10.04/12.04操作系统下,主要由4个部分组成。(1)僵尸程序执行过程监控平台。该平台负责僵尸程序的运行监控、执行轨迹的捕获、污点传播分析、符号执行及约束求解等实验任务。该监控平台的主要部分是二进制代码分析平台BitBlaze,包括动态分析部分TEMU和静态分析部分VINE。(2)执行轨迹分析工具包。该工具包由Perl语言实现,完成对执行轨迹的分析实验,比如分析僵尸程序代码空间中的代码覆盖情况,分析僵尸程序执行过程中与系统交互情况等。(3)控制命令挖掘工具包。控制命令挖掘工具包也由Perl语言实现,通过和执行轨迹分析工具的结合,利用部分僵尸程序执行逻辑的先验知识,可以进行对僵尸网络未知控制命令进行挖掘,并在此基础上对僵尸网络的命令控制机制进行进一步的分析研究。(4)僵尸程序行为监控工具包。该工具包由文件系统监视软件FileMon和网络分析软件Wireshark等成熟的系统监控软件组成,工作在Windows系统的僵尸主机下,用于对僵尸程序的宏观行为进行跟踪和监控。

2实验步骤

(1)熟悉监控环境和分析平台的使用。熟悉监控环境的使用,并在其中运行僵尸程序,尝试和僵尸网络命令与控制服务器进行连接和通信;熟悉二进制代码分析平台BitBlaze的使用,学习利用其动态分析组件TEMU进行轨迹捕获、二进制代码插装的技术和方法,熟悉利用静态分析组件VINE进行二进制代码的执行轨迹反汇编及符号执行、约束求解等分析方法。(2)僵尸程序执行轨迹捕获。执行轨迹是僵尸程序路径空间中一条路径的执行过程的详细记录。在BitBlaze平台的TEMU中运行僵尸程序,监控其执行过程,并将从命令与控制信道中接收到的网络数据标记为污点,捕获得到僵尸程序的执行轨迹文件。可以分别捕获僵尸程序在与控制命令服务器无网络交互、有网络交互及接收到不同控制命令等情况的几组不同的执行轨迹,以便于进行对比分析,并用BitBlaze平台中的VINE将这些二进制的执行轨迹文件转换成汇编语言格式。(3)僵尸程序执行轨迹文件分析。对捕获到的执行轨迹文件进行处理和简化,然后编写程序对其进行分析:统计分析僵尸程序执行轨迹中的线程个数及线程号、污点传播过程等信息;分析僵尸程序代码空间中的代码覆盖情况,计算代码覆盖率并分析其特点;统计分析系统API调用情况;从执行轨迹文件构造僵尸程序的控制流图。通过分析,对执行轨迹的特点和僵尸程序的执行逻辑有更加清晰的认识。(4)僵尸网络控制命令提取。根据步骤(3)中的分析结果,结合僵尸程序的固有特点,从执行轨迹中定位到僵尸程序中对控制命令进行判断、处理的命令控制逻辑代码段。定位的方法可以结合参考文献[3]中提出的规律,也希望学生探索和发现新的特点和规则。然后,在可控环境中执行僵尸程序,当执行到命令控制逻辑代码段时,利用代码插装等二进制代码动态分析技术[13]提取出僵尸程序可执行的控制命令。(5)僵尸程序行为分析。在可控环境中再次运行僵尸程序,利用FileMon和Wireshark等软件对僵尸程序的行为进行跟踪监控。其一,在没有与命令控制服务器交互时,分析僵尸程序执行后会有怎样的行为表现,例如自删除、修改系统文件、修改注册表选项、试图连接命令与控制服务器等;其二,在和命令与控制服务器进行交互时,利用步骤(4)中提取出的僵尸网络命令,触发僵尸程序运行,再监控其会有怎样的行为,并总结控制命令与僵尸行为的对应关系。通过多次实验和观察,对僵尸程序的行为和特征进行归纳总结。(6)僵尸网络命令与控制机制的进一步思考和探索。思考上述从僵尸程序二进制文件中挖掘未知命令方法的优缺点,并探索新的改进方法。根据提取出的控制命令及其对应的行为,分析僵尸程序和命令与控制服务器通信的方式,从整体上对该僵尸网络的命令与控制机制进行认识和思考。在上述步骤中,步骤(3)“执行轨迹文件分析”和步骤(4)“控制命令的提取”涉及较多的专业知识和二进制代码分析技术,是本实验的难点。

3实例分析

在TEMU中运行Zeus僵尸程序,在和命令与控制服务器进行通信时,动态捕获了Zeus僵尸程序的3条执行轨迹,其中的线程数、汇编指令总数和系统API调用个数见表1.对3个执行轨迹进行分析,了解Zeus僵尸程序的执行逻辑,利用执行轨迹中的代码块覆盖率特征,从中定位到满足参考文献[3]中提出的覆盖率规律的代码块,其所在代码区域就是僵尸程序的命令控制逻辑代码段。根据此方法,可以定位到的代码段地址范围为0x26e877c—0x26e87a2,其中调用了系统比较函数lstrcmpiw来进行比较,它是一个循环结构(见图3)。将Zeus僵尸程序再次放在TEMU中运行。当僵尸程序运行到命令判定循环的入口地址0x26e877c时,开始监控是否调用判定函数lstrcmpiw。如果发生调用,则修改输入命令为随机数据,使程序进入判定循环。在判定过程中,通过获取用来和输入数据比较的参数,动态捕获了Zeus僵尸网络的25个控制命令。提取出控制命令以后,就可以用这些控制命令作为网络输入来触发Zeus僵尸程序,使其表现出相应的行为。掌握了僵尸网络的命令与控制机制以后,也可以尝试伪造Zeus命令与控制服务器并向僵尸主机发送bot_uninstall等命令来卸载、删除僵尸程序,瓦解僵尸网络。

4结束语

实验设计论文范文第4篇

一般情况下选取两个同质水平训练队进行实验分组,实验组和对照组,设定在特定的周期内进行周期性的身体素质训练,然后在训练周期结束后对排球队员身体运动能力水平和体育学习水平进行对比分析。在实验教学过程中,对实验组进行单盲行的实验教学训练。

(二)实验指标的设计

依据相关的实验研究方法要求,保证实验前后检测的真实性,进行相关指标的测定。指标包括:1.前测指标:实验组排球队员和对照组的柔韧、力量素质和弹跳能力;2.后测指标:实验组排球队员和对照组身体素质水平:传球技术动作的完成情况,传球的效果;队员的体育学习心理水平:体育学习的动机水平和认知水平。

(三)实验控制的设计

在任何实验性的科学研究中,由于与实验相关的条件或因素如果是可测量的、数量化的或等级化的参与因素很多,势必就会影响实验的效果,不可避免,但是保持严谨的科学态度,合理的控制实验过程中的各因素、各环节的变量影响效果,就会最大限度的降低实验产生的误差,从提高实验的科学性和准确性,就本实验研究的过程来看主要是控制以下几种变量:1.对实验教师的控制:论文开展前通过走访和调查,选定的实验组和对照组的教师或者教练,无论从排球的教学水平、教学经验都要处于同水平,这样可以减少教师的影响误差。2.对队员的控制:参与对比实验分析的两组队员,都是普通学生,都没有运动员的经历,而且在本次实验前对两组学生分别进行指标的前测分析,保证实验前的两组学生身体素质和体育学习水平测试的差异不具显著性,从而降低学生水平差异带来的误差。3.对训练和教学过程的控制:为了实验的误差降低到最小,实验训练的场馆一般要求在同一场地,尽可能的减少场馆误差的影响。4.对测试方式和数据的控制:实验组和对照组的学生统一编排,并打乱测试顺序,统一对具有排球教学经验的教师进行测试,并进行数据的统一记录,保证测试方式和数据统,从而降低数据的误差。通过对以上几个影响因素的控制,最大限度的降低外部环境的影响效果,实验控制在一定程度上直接影响了实验效果,因此实验的控制必须在实验前后控制在最小范围内,才能保证实验的科学性和可靠性。

(四)实验步骤的设计

根据实验要求,在不同时期安排不同实验内容,具体步骤如下图所示实验步骤的设计是为了使训练阶段性更强,更能保证实验的科学性。实验步骤设计完成,对于今后的实验教学有一定的指导性作用。

(五)实验数据分析的设计

实验设计论文范文第5篇

1.1活动向导作用简介为了方便教学活动的开展,PacketTracer特意为学生和教师添加了一个有用的工具:活动向导。通过活动向导可以使教师非常方便地为学生创建一个非常具体的网络环境,然后让学生完成这个网络的搭建与配置。通过活动向导可以对考题进行分数的设置,一般情况下每设置一个知识点系统就会给这个点设置1分,而该考试题的总分要视该试题所包含的知识点的数量来决定[1]。当我们进入如图1所示的活动向导对话框以后,可以看到左边有10个按钮,它们分别对应10种不同的功能。⑴【Welcome】是欢迎界面,这个界面对活动向导的功能进行了比较系统的介绍。⑵【VariableManager】是变量管理器。⑶【Instructions】是文字编辑器,教师命题的文字和图片部分就在这里进行编辑。⑷【AnswerNetwork】按钮可以打开一个的窗口,在这个窗口中教师可以为自己设计的网络给出答案。⑸【InitialNetwork】按钮可以打开一个界面,通过这个界面可以设置一个网络让学生来完成搭建和设置。⑹【Password】按钮可以为我们设计的网络问题添加密码。⑺【TestActivity】按钮可以打开PacketTracerActivity窗口,在这个窗口中有我们为问题网络编写的说明,也有测试该网络是否正确的按钮和重置网络的按钮。⑻【CheckActivity】按钮的功能与【TestActivity】按钮基本一样。⑼【Save】按钮的功能是将编写好的网络问题保存在磁盘中,文件的扩展名是pka。⑽【Exit】按钮是当我们结束问题的编辑工作时用来退出活动向导界面返回PacketTracer的界面。

1.2HTML基本使用介绍在活动向导中操作指南是设计网络评估测试题的一个重要环节,通过操作指南用户可以知道应该怎样搭建和设置网络。在操作指南的图文编辑中,有不少HTML语言的标签,这些标签写在尖括号中,在文字的前后各有一个,成对出现,这就是我们所说的HTML语言的标签。与此同时,活动向导为网络试题提供试题答案管理器这项功能。在将设计的网络连通后,会出现一个树状结构,在这个结构中,我们可以为这道网络测试题添加所需测试的内容,也会为每一个内容设置分值。在树形结构列表中FeedbackWhenIncorrect栏是错误操作信息反馈栏,教师可以在这一栏中编写一些反馈信息,如果学生在这项操作中出现了错误,那么系统会把教师所编辑的反馈内容显示出来,这样可以给学生一些提示[2]。

2PacketTracer具体实验案例

PacketTracer模拟器中现有21个实验的学习练习题以及对应的测试题,可供教师在教学、作业、测验中随意使用。每个实验,模拟器都会提供相关的知识、实验拓扑中的路由器IP地址方案以及实验任务和配置过程。根据要求,学生可以进行连线,当完成连线后,学生可以知道自己的完成情况,也可知道所得的分数。以下是其中两个实验案例。

2.1RIP路由协议相关实验设计实验设计思路及背景:RIP是路由信息协议,是使用最广泛的距离矢量路由协议。和其他的距离矢量选择协议一样,它也是遵循距离矢量选择协议的规律,RIP每隔30秒就发送自己完整的路由表到所有激活的接口[3]。为了加强对该协议的学习,本次设计考虑到了RIP协议一些重要的特性,如版本1不支持不连续的网络;版本2默认时不接受版本1的更新信息等等[4]。根据这些特性,本次设计的理念是想办法解决这些问题,使这些功能能够实现。实验设计拓扑:根据实验需解决的问题,RIPv1与RIPv2之间路由选择的解决方案如图2所示。实验设计要点:⑴掌握RIPv1和RIPv2的基本配置。⑵掌握如何让RIPv1和RIPv2兼容。在属于RIPv2网络并连接RIPv1网络的接口上执行命令,可以使得RIPv2网络接收版本1的路由信息,从而实现RIPv1和RIPv2网络的兼容。实验需达到的效果:希望通过两个实验设计的全过程让学生更加熟悉RIPv1和RIPv2的差异性和统一性,在今后路由协议的运用中做到游刃有余。实验主要涉及协议:路由信息协议是一种使用最广泛的内部网关协议,是在内部网络上使用的路由协议(在少数情形下,也可以用于连接到因特网的网络),它可以通过不断地交换信息让路由器动态地适应网络连接的变化,这些信息包括每个路由器可以到达哪些网络,这些网络有多远等[5]。RIP是由“网关信息协议”发展过来的,可以说网关信息协议是RIP的最早版本。后来的一个版本才被命名为“路由信息协议”,是Xerox网络服务协议簇的一部分[6]。

2.2OSPF协议相关实验设计本次实验设计思路及背景:OSPF协议是一个链路状态协议,其分层次的概念深受许多企业的青睐,在许多企业网络、校园网络中OSPF都是网络规划师优先考虑使用的路由协议。基于该协议使用的广泛性和实用性,就有了本次实验设计的构想。实验设计拓扑如图3所示。实验设计要点:希望学生深刻理解区域的概念。OSPF提出了“区域”的概念,一个网络可以由单一区域或者多个区域组成。其中一个特别的区域被称为骨干区域,该区域是整个OSPF网络的核心区域,并且所有其他的区域都与之直接连接[7]。⑴掌握OSPF基本配置。⑵理解DR和BDR的选举过程并控制选举。同一个广播域的路由器或者一个点对点连接的两端的路由器,在发现彼此的时候,建立邻接[8]。OSPF协议同时使用单播和组播来发送Hello包和链路状态更新,使用的组播地址为224.0.0.5和224.0.0.6。与RIP和BGP不同的是,OSPF协议不使用TCP或者UDP协议而是承载在IP协议之上,IP协议号为89,工作在OSI模型的传输层[9]。⑶多路访问网络以及非广播多路访问网络的路由器会选举指定路由器(DR)和备份指定路由器(BDR),DR和BDR作为网络的中心负责路由器之间的信息交换从而降低了网络中的信息流量。OSPF协议同时使用单播和组播来发送Hello包和链路状态更新,使用的组播地址为224.0.0.5和224.0.0.6[10]。

3实验结果归纳及问题分析

3.1设计结果归纳本次设计实现了两方面的功能,一方面是教师编写基于PacketTracer的路由器配置的测试题目,设置分值,设置测试时间及管理密码等,并且可以跟踪检查学生对于路由器配置的掌握程度,方便辅导学生;另一方面,学生通过这样的测试系统可以在做题的过程中了解自己配置的进程,还可以一边配置,一边检查,方便自测,查找配置缺陷、网络连通障碍等等。尽管在时间以及操作上对考生做了限制,采用PacketTracer来进行实验反倒能加快学生对知识的掌握速度,避免了将很多时间浪费在物理硬件设备的连接和调试上。

3.2设计中所遇问题分析本次设计中主要做的就是展现PacketTracer相对于其他网络模拟器的优势方面,从而为将PacketTracer应用于计算机网络实验课程的教学做适当的铺垫。系统设计还存在欠缺,有很多模块操作还不够人性化,对很多错误信息的处理还不够全面。所开发的PacketTracer软件也有一定的限制,比如说在实现控制列表方面,不能够使用自反控制列表等。

4结束语

实验设计论文范文第6篇

实验前将所用试剂都置于电热恒温干燥箱中,在110℃条件下烘干处理3h,脱水后密封保存备用。以转炉提钒钒渣为参照[8-9],配置实验试样组成的质量分数见表1。配好的试样放入玛瑙研钵中研磨,保证样品充分混匀。实验材料准备好后进行以下实验:(1)差热分析法(DSC)实验:利用DSC精确测定试样的相变和反应温度。使用氩气(99.99%)作保护气氛,流量为2L/min。设备升温和降温速度为10℃/min,试样量为10mg[10]。(2)高温淬火实验:为确认FeO与V2O5发生的反应和生成的物质,以DSC测定的相变温度为依据进行高温淬火实验。试样装入MgO坩埚(33mm×29mm×50mm),放入二硅化钼炉中,加热到试样的液相线温度以上50℃,然后再降到至相变温度并保温一定的时间后迅速取出,置于水中淬冷。(3)样品表征:X衍射分析淬冷后的试样物相;采用扫描电镜观测样品形貌及尺寸。

2结果与议论

2.1差热分析试样经升温熔化后均匀性更好,故本实验以DSC降温曲线结果为准。从DSC降温曲线中得到试样的相变温度见表2。从表中可看出:1—4号试样在600℃左右开始熔化产生相转变,原因是1—4号试样中FeO含量较低,有放热峰出现所致;随着试样中FeO含量增加,试样的熔点升高,600℃左右不易发生熔化而产生相转变;1—7号试样在接近800℃左右均发生相变,原因是V2O5发生了分解反应:V2O5→V2O3+O2;3—10试样在970℃、1300℃、1450℃左右均发生了相变或反应。

2.2XRD分析试样高温淬火后用RigakuD/MAX2500衍射仪进行分析。试样在970℃保温2h后迅速取出用水淬冷,部分试样的分析结果见表3。图1和图2分别是试样10在1450℃和1300℃保温后得到的X衍射图谱。分析X衍射结果发现,FeO-V2O5体系在高温下发生了反应,970℃时主要生成钒酸铁FeVO4,1300℃和1450℃时主要生成反式钒铁尖晶石Fe2VO4;随着FeO含量的增加,体系中的物相减少,只有Fe2O3由此可以看出,FeO和V2O5之间发生了一系列氧化还原反应,其反应的实质是V2O5在反应开始时发生分解得到V2O3和O2,FeO被氧化成Fe2O3,V2O3与FeO和Fe2O3同时发生反应生成Fe2VO4,未分解完的V2O5与Fe2O3发生反应生成FeVO4。

2.3SEM分析通过扫描电镜可以更直观形象地观察铁钒体系中的物相结构。图3为试样分别在1450℃、1300℃保温30min的SEM。从图中可以看出,铁钒体系主要组成为钒铁尖晶石相和铁氧化物相,图中灰白色物相为尖晶石相,黑灰色物相为铁氧化物相。由1300℃保温得到的钒渣矿相中尖晶石的粒径明显比1450℃保温得到的尖晶石粒径大,其尺寸分布范围也较宽,主要分布在10~30μm之间。在1450℃保温时,尖晶石粒径主要分布在10~25μm之间,尺寸相对较小。这是由于高温下形核率大于晶体长大速率,所以形核较多,晶体尺寸较小;当温度降低时,形核率增大,但其增长率小于晶体长大速度,所以随着保温温度的降低,尖晶石平均晶粒尺寸增加。

3实验内容拓展

本文所设计的综合实验是研究型实验。学生可以在教师指导下完成系列实验,包括熟悉实验内容、设计实验方案、准备实验材料、完成实验操作、分析实验结果和撰写实验报告。通过该研究型实验,激发学生获取新知识的欲望,催化学生创新的热情,使学生更加注重知识体系的系统性和整体性,从而完成理论—实践—理论的循环过程。应用TRIZ理论的动态化原理[11-12],还可以对实验内容进行拓展,不断扩充和更新实验内容:(1)进行铁钒体系平衡的热力学计算。学生可根据最小吉布斯自由能原理进行计算,验证实验结果和理论计算的一致性。(2)探索钒铁尖晶石结晶规律。学生可在前期研究的基础上,自主设计实验方案,探索影响钒铁尖晶石结晶规律的因素。(3)从FeO-SiO2-V2O5系着手,探索钒氧化物的行为,为改进造渣制度提供理论依据。(4)探索焙烧浸出方式制取钒氧化物时工艺参数对钒铁尖晶石的影响。

4结束语

实验设计论文范文第7篇

1.弹性元件的虚拟模型根据导体材料的应变电阻效应,电阻的相对变化与应变之间的关系。为了获得电桥输出与载荷的关系,需要构建弹性元件的数学模型。电阻式传感器的弹性元件结构有圆筒式、柱环式、悬梁式和轮辐式四种基本类型,各种不同的结构型式的弹性元件应变ε与载荷F的关系如下所示。(1)柱筒式弹性元件其中E为弹性模量,A为横截面积。(2)柱环式弹性元件其中R0为内环半径,b为柱环宽度,h为柱环厚度,E为弹性模量。(3)悬梁式弹性元件其中l为有效长度,b为悬梁宽度,h为悬梁厚度,E为弹性模量。(4)轮辐式弹性元件其中b为轮辐条厚度,h为轮辐条宽度,G为剪切模量。将四种弹性元件类型设计在一个子VI中,通过操作“弹性元件类型”下拉列表进行选择。

2.虚拟电桥模型电桥是目前常用的电阻式传感器测量电路,整个电桥电路由四个桥臂组成,当桥臂接入应变电阻时则成为应变电桥。当有一个臂被接入应变电阻时,被称为单臂电桥;两个臂被接入应变电阻时则为双臂电桥(也称半桥);四个臂均被接入应变电阻时则称为全桥。在桥路中均未接入应变电阻时。

3.电阻属性和接桥方式设计前面板(如图1所示)上电桥部分的电阻属性分为固定电阻、应变电阻和平衡电阻三种,应变电阻的贴片方式分为受拉应力和受压应力。(1)电阻属性。图1中的电阻R1的属性只有两种:应变电阻和固定电阻。该属性通过操作“R1”设置开关进行选择。若R1为应变电阻属性,其阻值会随载荷F的增减而产生相应的ΔR1以及因温度变化产生的ΔR1t。电阻R2的属性与R1相同。通过操作“R2”设置开关可以选择R2的属性。若R2作为应变电阻,则会随载荷F的增减而产生相应的ΔR2以及因温度变化产生的ΔR2t。若操作“差动设置”开关,则可使R2的受力方式为受压应力,从而会随载荷F的增减而产生相应的-ΔR2以及因温度变化产生的ΔR2t。R3,R4需要参与调平电路的设计,因此接线也会相对复杂。通过操作“R3”和“R4”设置开关对该电阻进行属性操作。图中出现的Rr显示框为调零电路中的R5的右半部分与R6串联然后再与R3并联后的阻值。Rl显示框为R5的左半部分与R6串联后再与R4并联后的阻值。(2)接桥方式的设计。虚拟前面板上的电桥工作方式分别为:不工作、单臂工作,半桥工作和全电桥工作方式四大类型。对于半桥和全桥方式,其中应变片又分为差动和非差动两种布片方式。不工作方式指的是R1,R2,R3和R4都设置成固定电阻。该方式无论怎样施加外力,输出始终为零。单臂工作时将R1设置为应变电阻,R2、R3、R4设置为固定电阻。此时,按“R1”按钮,“R1”按钮变绿,图中应变电阻R1如果显示向上的箭头,表明该应变电阻受拉应力,对应电阻值增大;如果应变电阻R1显示向下的箭头,表明该应变电阻受压应力,对应电阻值减小。半桥非差动工作时,R1、R2设置为应变电阻,R3、R4设置为固定电阻。按下“R1”、“R2”两个按钮,两者均变绿表示接入工作臂,同时电阻R1、R2上的箭头方向一致,表示应变片受到相同性质的应力,此时电桥输出基本为零。半桥差动工作时,R1、R2设置为应变电阻,R3、R4设置为固定电阻。按下“R1”、“R2”两个按钮,两者均变绿表示接入工作臂,同时电阻R1显示向上箭头,R2显示向下的箭头,表示对应的应变片受到拉应力和压应力。全桥非差动工作时R1、R2、R3、R4属性均为应变电阻,此时,按下“R1”、“R2”、“R3”、“R4”按钮,均变为绿色。四个电阻上的箭头方向一致,表明四个电阻受相同性质的应力,此时电桥输出基本为零。全桥差动工作时,“R1”、“R3”电阻箭头向上,表示受拉应力;“R2”“R4”箭头向下,表示受压应力。

4.温度误差计算及补偿在讨论应变计的工作特性时通常是以温度恒定为前提的,但在实际应用过程中,工作温度可能会发生变化,从而导致应变电阻的阻值发生变化。设工作温度变化为Δt℃,则由此引起粘贴在试件上的应变电阻的相对变化为。将公式(11)代入公式(7)-(10),即可以计算出温度变化时的电桥输出,该输出即为温度误差。单臂工作时,采用补偿块法进行温度误差补偿,该方法利用两块参数相同的应变计R1、R2,R1贴于试件上并接入工作臂,R2贴于与试件材料相同温度环境的补偿块上,但该补偿块不参与机械应变,同时接入电桥相邻臂作为补偿臂。当接通电源并施加负载时,补偿臂产生的热输出与工作臂产生的热输出相同,则可达到温度误差补偿的目的。对于半桥差动和全桥差动工作方式,根据公式(10)的和差特性即能进行温度误差补偿。5.非线性误差计算及补偿公式(10)是对公式(9)进行线性化后的输出。对于单臂工作时,非线性误差可以通过在电路中加入补偿臂(该臂不受外加应力作用)。对于半桥差动和全桥差动工作方式,不需要外接补偿电路,因为差动工作方式具有很好的非线性补偿作用。

二、虚拟操作面板的设计

用LabVIEW软件开发虚拟仪器,用户能“量身定制”仪器的操作面板。本实验根据真实的电阻式传感器实验电路接线图作为虚拟仪器的操作面板,能直观地阐述电阻式传感器实验原理及操作方式,虚拟面板如图1所示,主要包括虚拟弹性元件选择、应变电阻布片方式选择、电桥接法选择、电桥调零模块、差动放大模块、直流电源模块。此外前面板还包括电阻、外力、温度的赋值等。

三、远程虚拟实验的演示步骤

电阻式传感器实验的远程操作分别由DataSocket技术与Web网络工具来实现。DataSocket技术以及网络化技术的结合使虚拟仪器的远程控制成为可能,可在若干计算机上对传感器虚拟实验进行操作及数据处理。这为传感器虚拟实验的互动教学提升了便捷性。电阻式传感器虚拟实验的远程操作过程如下:第一步,打开服务器网页。第二步,输入R1、R2、R3、R4的阻值。第三步,选择弹性元件类型。第四步,设置接桥和布片方式。第五步,打开电源开关。第六步,调节调零电位计,直至电桥近似达到初始平衡状态。第七步,点击“施力F”按钮。第八步,查看客户端网页,查看电桥输出曲线。第十步,点击服务器面板中的“复位键”,使所有选项、开关及输入数据均清零和初始化。第十一步,关闭电源开关。

四、结束语

实验设计论文范文第8篇

仪器:NICOLETiS10型红外光谱仪、BHX-9101-1SA型鼓风干燥箱、DW-3-60型电动搅拌器、PL203/01型电子天平、KEMS-2S型磁力加热搅拌器;浪潮英信NF5220计算服务器,GAUSSIAN09、GaussView(3.09)软件。试剂:PET聚酯碎片(3~5mm×5~8mm,由回收农夫山泉饮料瓶制得);乙二醇、碳酸氢钠、对苯二甲酸、氧化锌、浓盐酸、浓硫酸、85%水合肼等试剂均为分析纯;蒸馏水。

2TPA的测定与表征

我们通过一系列的实验,比较了用不同方法和不同条件降解PET得到TPA(或其衍生物)的收率。收率计算公式如下。采用美国Nicolet公司生产的NICOLETiS10型傅里叶变换红外光谱仪对产物(对苯二甲酸)进行结构表征。对苯二甲酸为白色固体,研磨成粉末后,采用KBr压片法进行检测。同时,还利用了量子化学计算方法,以GAUSSIAN09计算程序[10]采用密度泛函理论对对苯二甲酸的红外光谱进行了理论模拟计算。

3PET降解方法

3.1乙二醇醇碱联合解聚法在装有冷凝管、搅拌器、温度计的三颈圆底烧瓶中投入5g聚酯废料、25mL乙二醇、0.5g氧化锌、5gNaHCO3进行反应,油浴加热逐步升温至190℃,反应30min后,降温至160℃停止搅拌,减压回收乙二醇;蒸馏毕,向三颈瓶中加入50mL沸水,搅拌使残留物溶解,趁热过滤;将滤液转移到400mL烧杯中,水稀释至200mL,加热煮沸,趁热用1:1盐酸酸化至pH5~6;冷至室温后,冰水冷却,抽滤,滤饼用蒸馏水洗涤至滤出液pH=6,在60℃下干燥滤饼,得白色粉末,称重,并计算对苯二甲酸收率。

3.2肼解法在装有冷凝管、磁力搅拌子的圆底烧瓶中投入1g聚酯废料、10mL85%水合肼,搅拌,油浴加热至100℃,反应6h后,减压回收水合肼;残余物加入10mL水,静置,滤得PET的降解产物对苯二甲酰肼,在60℃下干燥,称重,并计算对苯二甲酰肼的收率。此法参考氨解法,使用亲核性更强的水合肼溶液替代胺类,能提高降解效率。

3.3酸性降解在装有冷凝管、磁力搅拌子的圆底烧瓶中投入1g聚酯废料、5mL浓硫酸,搅拌,85℃下反应5min;反应毕,冷却至室温,残留物倒入冰水中,用30%的NaOH水溶液调pH至12,滤去不溶物,滤液用浓盐酸调pH至6,有白色不溶物析出,放置过夜,过滤得产物对苯二甲酸,在60℃下干燥,称重,并计算对苯二甲酸收率。

4结果与讨论

4.1不同化学降解方法的比较通过酸性水解法、肼解法和醇碱联合法,考察了降解PET聚酯瓶的情况,结果列入表1。比较几种方法在经济效益和工业化等方面的优劣,无论是肼解法,还是酸性水解法都存在很大的局限性,如腐蚀设备、污染环境等。醇碱联合解聚法能在温和的条件下,快速实现PET聚酯瓶的分解,故我们选择醇碱联合解聚法为重点研究方向,探索其最佳反应条件。

4.2醇碱解聚法的工艺优化基于以上3种降解方法的对比,结合醇碱联合解聚法的研究进展,采用正交实验来探索最佳工艺条件,重点考察了3种影响反应的因素,A:碳酸氢钠用量:m(NaHCO3)/m(PET);B:反应时间(min);C:反应温度(℃)。由文献已知影响因素的大约范围,设计出因素水平表(表2)。参照上述乙二醇醇碱联合解聚法的方法进行试验,结果见表3。根据上述方法分析,RC>RB>RA,即各因素对TPA收率的影响程度顺序为:反应温度>反应时间>物料比;较佳因素水平为A3B2C2,即PET降解的较佳工艺为:m(NaHCO3)/m(PET)=1.1,反应时间30min,反应温度190℃。从表3可以看出,反应时间和反应温度是影响乙二醇醇碱联合解聚法的关键因素,温度过高或反应时间过长会导致反应副产物增多,收率下降。上述最佳反应条件与文献报道的乙二醇解聚法的最优反应条件(190~196℃,0.1MPa,催化剂(氧化锌或醋酸锌)用量为PET质量的0.5%,m(EG)/m(PET)=2,反应3h)[6-7]接近,但反应时间比乙二醇解聚法短得多,且反应产物也不同。

4.3产物IR表征与结果分析我们对由PET瓶回收的TPA进行了IR表征(图1C),并将该图谱与购买的分析纯TPA样品的IR图(图1D)进行对比,发现两者的图谱基本吻合,验证了所回收的白色固体确实为TPA。为了进一步指认IR特征振动峰,我们进行了相应的密度泛函理论的计算。所选计算水平为M062X/6-31G(d,p),优化的TPA单体与二聚体的几何结构如图1A,图1B所示。3059cm-1附近为苯环上C—H伸缩振动峰;3000~2500cm-1可能为TPA分子间形成氢键后O—H的伸缩振动峰;1571cm-1和1508cm-1处为取代苯基的一组相关振动峰;1661cm-1处为羧基(CO)的伸缩振动峰;883cm-1处为苯环的对位取代吸收峰。此外,通过对比对苯二甲酸的单体(图1A)和二聚体(图1B)的计算结果,发现当考虑TPA分子之间形成分子间氢键时,二聚体计算模拟的红外光谱图与实验的红外光谱图能较好吻合,说明在固态时对苯二甲酸分子之间存在较强的分子间氢键。

5结论与展望

友情链接