美章网 资料文库 无铅焊接工艺范文

无铅焊接工艺范文

无铅焊接工艺

一、我们面对的无铅焊接挑战

铅是种特性十分适合焊接工艺的材料。当我们将它除去后,到目前还无法找到一种能够完全取代它的金属或合金。当我们在工艺、质量、资源和成本等方面找到比较满意的代用品时,我们在工艺和成本上都不得不做出让步。而在工艺上较不理想的情况有以下几个方面。

1.较高的焊接温度。大多数的无铅焊料合金的熔点都较传统锡铅焊料合金高。业界有少部份溶点低的合金,但由于其中采用如铟之类的昂贵金属而成本高。熔点高自然需要更高的温度来处理,这就需要较高的焊接温度。

2.较差的润湿性。无铅合金也被发现具有较不良的润湿性能。这不利于焊点的形成,并对锡膏印刷工艺有较高的要求。由于润湿效果可以通过较高的温度来提高,这又加强了无铅对较高温度的需求。熔化的金属,一般在其熔点温度上的润湿性是很差的,所以实际焊接中我们都需要在熔点温度上加上20度或以上的温度以确保能有足够的润湿。

3.较长的焊接时间。由于温度提高了,为了避免器件或材料经受热冲击和确保足够的恒温以及预热,焊接的时间一般也需要增长。

以上这些不理想的地方带给用户什么呢?总的来说就是器件或材料的热损坏、焊点的外形和形成不良、以及因氧化造成的可焊性问题等工艺故障。这些问题,在锡铅技术中都属于相对较好处理的。所以到了无铅技术时,我们面对的焊接技术挑战更大。

二、工艺窗口

简单来说,无铅的工艺挑战或工艺难处,在于其工艺窗口相对锡铅技术来说是缩小了。例如器件的耐热性,在锡铅技术中一般为240℃,到了无铅技术,IPC和JEDEC标准中建议必须能够承受260℃的峰值温度。这提高只是20℃。但在合金熔点上,从锡铅(Sn37Pb)的183℃到SAC305的217℃却是提高了34℃!这就使工艺窗口明显缩小。使工艺的设置、调整和控制都更加困难。

如果不采用较高成本的低温无铅合金,你的最低温度(约235℃),几乎已经是锡铅技术中的最高焊接温度了。而如果你采用美国NEMI的建议,也就是使用SAC305和焊接温度在245到255℃时,你的热-冷点温度窗口只有10℃,而在锡铅技术中这温度窗口有30℃之多。

无铅器件的耐热标准,目前多认同确保在260℃最高温度上,这距离推荐的SAC305合金的最高焊接温度只有5℃。如果我们考虑测量设置的系统误差(注二)的需要保留6℃,以及业界许多回流的波动性时,我们根本无法使用高达255℃的温度。

三、工艺设置

回流焊接的工艺设置,就是通过炉子的各温区温度,以及传送链速度的设置来取得最适当的“回流温度曲线”的工作。最适当的意思,表示没有单一的曲线是可以供所有用户使用的,而必须配合用户的材料选择、板的设计、锡膏的选择来决定。不论是锡铅技术还是无铅技术,其实工艺设置的方法都是一样的。所不同的是其最终的参数值。基本上,无铅由于前面提到的工艺窗口缩小的问题,使得工艺设置的工作难度较高。这需要更高的工艺能力,以及对技术的了解和掌握上做得更完整更细化。

工艺设置的首要条件,是用户必须知道所要焊接产品的温度时间要求。对于大多数用户来说,这就是回流曲线规范。为了方便技术管理,一般只制定了一个规范,规范中清楚地指出了各参数的调整极限。在锡铅技术中,绝大多数用户的这个规范曲线都来自锡膏供应商的推荐。在工艺窗口较大的锡铅技术中,人们遇到的问题似乎不大(但绝非没有问题)。但进入无铅后,这种法未必可靠。原因是锡膏并非决定焊接温度曲线的唯一因素,以及供应商提供的曲线并不精确。在掌握工艺技术较好的企业中,选择锡膏前都必须对锡膏等进行测试评估。

器件焊端镀层是另外一项没有被仔细了解和控制的材料参数。镀层的材料(例如NiPd或Sn等等)、镀层的工艺(例如无极电镀,浸镀等等)、以及镀层的厚度,将决定用户的库存能力,可焊性以及质量问题或故障模式。而这些也会因为无铅技术到来而有所变化。以往不太需要注意的,现在也许会成为不得不给予关注的。PCB焊盘的镀层也一样,材料、工艺和厚度都必须了解和给予适当的控制。总之,要有良好的工艺设置,用户必须首先知道自己的材料和设计需求。从需求上制定应该有的温度曲线标准。

四、工艺管制和监控

以上所谈的内容,如果掌握得好,就能协助用户设置出一个较好的回流焊接工艺。而在整个产品产业化过程中,以上的内容要点可以协助用户进行试制和试生产的工艺阶段。当以上工作处理好后,接下来的就是面对批量生产了。批量生产的重点,在与推动快速生产的同时,确保每一个产品都是完好地被制造出来。所以我们就有所谓的质量管理工作和责任部门。

时至今日,大多数工厂的质量管理,还是较依赖传统的一些检验和返修的做法。例如采用MVI(目检)、AOI(自动检验)等手段,配合以一些量化统计做法如SPC等。但在今天的先进生产技术中,这些都属于较落后的手段方法。以下指出几个常遇到的缺点。

1.对故障的改正成本高;

2.属于事后更正的概念,无法取得零缺陷成绩;

3.目前的检查技术无法检出所有问题(一些故障的可检性还不好);

4.目前检查技术在速度和精度上都还跟不上组装技术;

5.太多和滥用检查技术,反会对它形成不良的依赖性,而忽略了从工艺着手;

6.SPC不适合于小批量和高质量的生产模式。这情况下其能力非常低。

较好的做法是检查设备和工艺能力,控制过程,而不是检查加工的结果(也就是产出品的检查)。厂内的所有炉子的性能必须给予测量和量化。在保养管理中确保Cm和Cmk的受控。这是良好质量的前提条件之一。这方面的讨论不在本文的范围之内。而工艺能力以及加工过程的控制,在生产现场又如何进行呢?

我们不可能对每一个产品都焊上热耦。有一种技术可以做到,就是非接触式测量的红外测温技术。曾有炉子供应商在炉子内部设计这样的温度监控,但由于技术不成熟,效果不理想而最终没有大量推广。过后就没有见到有开发这类技术的。

这类系统通过以下的途径提供用户很好的质量控制方法:

1.100%不间断的检查;

2.实时测量和监督;

3.提供预警;

4.完整的纪录方便质量跟踪;

5.完整的报告可以提高客户的信心。

除了以上功能之外,其实这类系统还可以协助监控炉子的表现,提高炉子的维护保养管理,以及将来的采购工作。是个先进数据管理系统中重要的一个工具。

当我们进入无铅技术后,缩小的工艺质量窗口对于参数等的偏移敏感得多,也推动了我们对这类质量监控工具的需求。其作用就像质量管理学中的一句常用名言:“不要靠猜测,而要测量和理解它!”