美章网 资料文库 热处理工艺论文范文

热处理工艺论文范文

热处理工艺论文

热处理工艺论文范文第1篇

1.1试验材料本文研究的材料为14Cr1MoR+S32154爆炸复合板,规格为(3+75)mm,2种材料的化学成分和力学性能见表1和表2。

1.2试验方案制定不同热处理工艺,对14Cr1MoR+S32154试板进行热处理试验,并检验理化性能和显微组织,试验方案见表3。

2试验结果及分析

2.1试验结果理化性能检测结果见表4.

2.2结果分析

2.2.1理化性能1)爆炸复合板依靠炸药爆轰产生的冲击力完成基覆板的冶金接合,完成爆炸焊接的同时,复合板也产生了冲击硬化和内应力,表4中6号试样为爆炸复合态的力学性能,与原始基板相比,其力学性能表现为强度高,屈强比高,断后伸长率低。2)1、2号试样经历了相变温度以上的高温热处理,基板性能与原始状态相比有较大差别,强度降低,冲击吸收功减少,断后伸长率增加。1号试样经历了高温正火+720℃回火热处理,基层获得较好的强度和塑韧度配合,综合力学性能较好;2号试样的热处理为800℃退火,与1号试样相比,强度和塑性差别不大,但冲击韧度大幅度降低,对覆层弯曲和晶间腐蚀检验均不合格。800℃下长时间停留对覆层S31254产生了不利影响,析出了脆性相。3)3、4、5号试样的热处理为相变温度以下的低温热处理,旨在消除爆炸冲击硬化,恢复性能,尽量减少对覆层S31254析出相的影响。从表4试验结果可以看出,低温退火可以消除爆炸加工硬化现象,随着加热温度的升高,基层14Cr1MoR强度逐渐降低,塑性变好,冲击吸收功无明显变化。同时覆层的外弯试验和晶间腐蚀试验结果均合格,可见低温热处理未对覆层产生明显不利影响。

2.2.2显微组织分析1)基覆材的原始状态显微组织如图1所示,基层为贝氏体组织,覆层组织为孪晶奥氏体+少量碳化物。2)1号试样经正火+回火后复合板基覆层的显微组织如图2所示,热处理后基层组织为铁素体+贝氏体,覆层组织为等奥氏体+碳化物,由于加热温度低,奥氏体为等轴晶粒[4];2号试样800℃退火后的金相组织如图3所示,热处理后基层组织为铁素体+珠光体+贝氏体,覆层组织为孪晶奥氏体+碳化物。与2号试样相比,1号试样基层组织更为均匀,更接近原始组织,故力学性能较好,但由于加热温度高,覆层组织与原始状态相比变化较大。与原始状态相比,2号试样覆层晶界和晶内产生了大量析出物,导致力学性能恶化和耐蚀性降低。3)由于3、4、5号试样的热处理为相变温度以下的退火处理,基层未发生相变,因此主要对覆层组织进行观察分析。金相照片(见图4)显示,3号和4号试样的金相组织与原始状态最为接近,为孪晶奥氏体+少量碳化物,5号试样在晶内和晶界析出相明显增多。

3结语

热处理工艺论文范文第2篇

各元素在合金中的作用如下:(1)Si和Mg的影响Si和Mg是该铝型材合金的主要组成元素,其结合形成了产品的主要强化相Mg2Si。但Si和Mg比例不同,形成强化相的数量和分布有差别,这直接影响到产品日处理后的力学性能。研究表明[3],对于Al-Mg-Si三元合金,当其处于ɑ(Al)-Mg2Si-Si三相区间内时,具有最大的抗拉强度。对于Al-Mg-Si三元合金,Mg2Si含量增加,会提高其抗拉强度,但会降低其伸长率;当Mg2Si含量为定值时,Si含量增加,抗拉强度增加,伸长率变化不大,但当Si出现过剩相时,合金的耐蚀性随过剩相含量的增加而降低,脆性增大;当Si含量为定值时,增加Mg含量,也会提高抗拉强度。合金位于ɑ(Al)-Mg2Si两相区或Al单相区(Mg2Si固溶于基体),具有最佳的耐蚀性能。公司根据以上机理,确定了内控标准。(2)Mn的影响Mn亦可强化基体,提高产品的韧性和耐蚀性,但Mn含量过多时,会减少Si的强化效果,形成晶内偏析,产生粗精组织,降低铸锭的挤压性能,因此,要适当控合金中Mn含量。(3)Ti的影响Ti是晶粒细化剂,可以避免铸造时形成热裂纹,减少铸锭中的柱状晶组织,细化铸锭的晶粒度,减少挤压产品的各向异性。(4)Zn和Cu的影响少量的Zn和Cu可以提高铝型材的强度,耐蚀性变化不大,但添加量过多时会降低铝型材的抗腐蚀性。同时,少量的Cu可以减少人工时效后机械性能的下降。(5)Fe的影响Fe是铝型材中的杂质元素,会损害型材的综合性能,应尽量减少其含量。综上所述:在该产品用铝合金成分配比中,镁硅比应保持在1.18左右,此时铝型材内强化相绝大部分是Mg2Si,含有少量的富余Si,Si含量亦不过剩,此时强度较高,塑性和抗蚀性未降低;由于没有过剩的硅含量,Mn含量可以处于国标的下限。Fe含量应根据原铝锭冶炼水平,越低越好。

2热处理工艺控制

2.1铝棒均质热处理工艺控制在铝棒铸造成型过程中,受合金成分、浓度梯度、温度梯度、冷却强度等因素的影响,铝棒不可避免的会出现树枝晶、蔷薇晶、带状组织、偏析、非平衡相、铸造应力等不希望得到组织或状态,为了在挤压前消除这些缺陷,优化铸棒组织,需要对铝合金棒进行均质处理。均质处理时一是要考虑铝棒不能过烧,出现二次共晶;二是要使粗大的针状、带状和非平衡相充分溶解。以XX公司35吨均质炉,装入直径292mm铝棒为例,考虑到热电偶误差,保温温度应控制在570±5℃,保温6h为宜,低于560℃,可能出现组织不均匀区域(低倍组织),挤压型材力学性能较低;高于585℃,将会使晶界粗化,引起过烧,严重时形成难熔质点。保温时间应在5.5~6.5h之间,过高和过低都影响铝型材力学性能。以保温温度570℃,保温6h为参照,挤压工艺相同的情况下,当保温温度延长至7.5h时,抗拉强度下降约11%。冷却时,采取风冷+水冷分级的冷却方式,一方面使冷却介质均匀分布,一方面不至于冷却速度过慢或扩快,影响均质效果。

2.2加热固溶热处理工艺控制研究表明[4],模具出口处型材温度受铝棒加热温度、挤压速度和其它因素多重影响,其中铝棒加热温度影响强度约44%,挤压速度影响强度约32%。对于本文研究的该型材产品,由于合金为6082合金,本身变形抗力较大,同时型材截面复杂,幅面宽,因此,适宜较高的铝棒加热温度,低的挤压速度。对铝棒加热的控制主要是加热温度和保温时间,对于加热温度控制,主要考虑因素是型材出口温度(固溶温度)和变形抗力,铝棒加热温度过低,将造成变形抗力过大,出现模具崩裂或走水;即使挤出型材,型材出口温度较低,型材性能较差。考虑到铝棒从铝棒炉出来到进入挤压机有一定的时间间隙,铝棒加热温度应适当提高。对于铝棒保温时间控制,主要考虑析出物溶解程度和铝棒温度均匀性,对于长棒炉,通过改善加热方式和内部热循环方式,尽可能提高炉内温度均匀性。对生产该型材的铝棒,保温时间应控制在3分钟以上,能够保证析出相的充分溶解,如果铝棒进入加热炉前长时间放置,保温时间应延长。同时,实践证明,保温时间继续延长,对挤出型材性能影响不大。当生产铝型材使用在线淬火方式时,型材出口温度即为固溶温度。固溶温度与铝棒加热温度直接相关。对于生产该型材的6082合金,理论上,固溶温度越高,越有利于强化相的彻底固溶。由上述可知,其它挤压工艺相同的情况下,铝棒加热温度直接决定固溶温度,因此铝棒温加热温度越高,固溶的越好,但固溶温度要低于合金最低熔点,防止合金过烧。生产实践表明,当固溶温度处于520-545℃时,型材具有较高的性能;此时,采用某挤压工艺时,铝棒加热温度应控制在485~510℃。

2.3淬火工艺控制由于生产本文所述型材产品使用的是6082铝合金,该合金的淬火敏感性比6061、6063等牌号合金要高[2],因此,淬火强度要高,否则,将影响产品强度和时效效果。在曾经使用过的水淬、强风+雾、强风等淬火方式中,水淬冷却强度最大,淬火后硬度高,但淬火后由于型材厚度不均,容易出现产品的翘曲和变形,造成废品。强风+雾的淬火方式亦能达到产品性能要求,但对光身料产品,气雾容易在产品形成水渍,增大后期处理难度。Xx公司通过改变出风口位置,改善气体质量和温度,可以使产品强度和硬度等性能指标达到要求。在淬火工艺控制过程中,该型材的淬火冷却速度要保证达到300℃以上。

2.4时效工艺控制经过固溶淬火后的铝型材得到一种不稳定的固溶体,此时其力学性能并不能达到最大;同时,由于该固溶体处于过饱和状态,又有较大的析出倾向,如果不对其进行人工时效处理,析出相将在晶界处聚集,出现晶间腐蚀或应力腐蚀。在实际生产过程中,由于可能需要整形等工序,人工时效前产品会在自然状态放置一段时间,相当于一个自然时效过程。生产实践显示,自然状态放置时间应尽量避免在5~7h之间,在此时间区间内,相同人工时效工艺下,力学性能偏低。在人工时效工艺参数优化过程中,当时效温度为175℃吴宗闯,等:集装箱铝型材生产过程中热处理工艺控制初探•89•时,保温6.5h,产品性能最优;但延长保温时间,产品强度、硬度等力学性能变化不大,保温时间延长至15h,产品性能略有降低,强度降低小于3%。但保温时间低于5.5h,力学性能下降明显。考虑企业成本控制因素,保温时间控制6~7h最佳。

3结束语

热处理工艺论文范文第3篇

通过降低热处理的工艺温度能有效减少由此产生的变形。降低工艺温度,能相对减少工件的高温强度,并增强其塑性抗力以及抗应力变形、抗淬火变形、抗高温蠕变的能力。降低工艺温度,还能够减少工件加热、冷却的温度区间。温度区间减少后,由热处理引起的各部位温度的一致性也会增强,而温度的不一致性正是引起工件组织应力和热应力的根本原因,随着温度不一致性减少,由此而导致的变形也会相应减少。此外,在降低工艺温度并缩短工艺时间的情况下,将缩短工件的高温蠕变时间,从而减少变形。科学合理的热处理工艺是减小热处理变形的关键因素。由图1可以看出,在650%球化退火后的硬度梯度和740%球化+680%等温处理的硬度梯度结果相近,未经球化退火的齿轮的硬度较前两个低。这是因为球化退火可使淬火后渗层表面残留奥氏体量减少,从而提高了齿表面硬度,因此20CrNi2MoA钢齿圈渗碳后应采用球化退火工艺,同时为减小热处理变形,在650℃球化退火效果更好。

2变形的其他影响因素及减小措施

2.1预备热处理在热处理过程中,有可能引起内孔的变形增大,如存在混晶、大量索氏体或魏氏组织以及过高的正火温度。因此需要对正火温度进行控制,也可以采用等温退火的方式来对锻件进行处理。金属最终的变形量与很多因素有关,如淬火前进行的调质处理以及退火和正火。金属产生变形进而导致金属组织结构也发生变化。研究和实践表明,为使金属组织结构均匀,在进行正火处理时采用等温淬火是一种有效的减小其变形量的措施。

2.2运用合理的冷却方法金属淬火后冷却过程的控制也是必须考虑的一个因素。淬火后采用油进行冷却,因此其变形直接受到油的冷却能力的影响。通常来说,热油淬火产生的变形小于冷油淬火,一般控制在100+20%。同时,变形还受到淬火的搅拌方式和速度的影响。在进行金属热处理时,金属产生的应力及模具的变形与冷却的速度和冷却的均匀程度有关。过快的冷却速度和不均匀冷却都会导致应力及模具变形的增大。因此,应尽量采用预冷,不过需要注意的是应保证模具的硬度要求。为减少热应力和组织应力,可以选用分级冷却淬火,这种方式对形状复杂的工件十分有效,能显著减少其变形。采用等温淬火的方式,则适用于十分复杂并且有较高精度要求的工件,能使金属变形显著减少。

2.3零件结构要合理改善零件的结构是减少热处理变形的关键环节。经过热处理后的工件,其厚度不同的部分冷却的速度也是不同的。因此,在满足工件使用性能的前提下,应使工件的厚度差别不能过大,尽量使零件的截面均匀,减少由应力集中导致的过渡区的畸变和开裂现象。保持结构与材料成分和组织的对称性,避免尖锐棱角、沟槽等。此外,采用预留加工量的方式也是减少厚度不均匀零件变形的有效方式之一。

2.4采用合理的装夹方式及夹具通过采用合理的装夹方式和夹具,能够使工件获得均匀的加热和冷却,从而减少热应力以及组织应力的不均,有效减小热处理导致的工件变形。

2.5机械加工工件的加工通常需要经过很多道工序,如果热处理加工是最后的工序,则应控制其畸变的允许值,使之满足图样规定的工件尺寸。依据上道工序的加工尺寸来对畸变量加以确定,因此掌握畸变规律尤为重要,为使热处理导致的畸变处于合格的范围,在进行热处理前应对尺寸进行预修正。如果热处理是中间的工序,机加工余量和热处理畸变量之和即为热处理前的加工余量。导致热处理变形的因素多而复杂,因此相较于机械加工余量来说,热处理的加工余量不易确定,在实际加工中应留出足够的加工余量用于机械加工。

2.6采用合适的介质在热处理的过程中,介质的选择也十分重要,应选择有利于减小变形量的介质。研究和实验表明,硬度要求相同的情况下,采用油性介质是更好的选择。不同介质具有不同的冷却速度,在其他条件相同的情况下,同油性介质相比较,水性介质的冷却速度较快。此外,水温的变化也会对介质的冷却性能造成影响,其变化对油性介质冷却特性产生的影响较小。热处理条件相同的情况下,水性介质淬火后会产生相对较大的变形量。

3结束语

热处理工艺论文范文第4篇

Al-Cu-Mg-Ag合金的固溶热处理就是在较高温度下使合金元素充分溶解到α-Al基体中,然后快速冷却以得到过饱和固溶体,使其在后续的时效热处理中析出尽可能多的强化相(Ω、θ''''相),以提高合金的力学性能,是时效热处理的前期准备过程[7]。影响固溶热处理的主要工艺参数有:固溶温度、固溶时间和冷却速度。固溶温度越高,Cu、Mg、Ag等合金元素在合金中的固溶度越高,合金元素的扩散速度越快,固溶时间也就越短。但是当固溶温度过高时会使合金中的低溶点相发生溶化,即出现过热现象;同时弥散分布的金属间化合物也会发生长大粗化,导致合金性能降低。因此,固溶温度对Al-Cu-Mg-Ag合金性能的影响比较敏感[15],而固溶时间对Al-Cu-Mg-Ag合金的影响较小,为了阻止强化相的析出趋势,固溶后冷却速率需要足够大,一般选择室温水淬。表2是当前典型的几种Al-Cu-Mg-Ag合金的固溶热处理工艺。从表2发现,含Ag的Al-Cu-Mg系铝合金,由于其合金化元素种类多,含量高(尤其是Cu的含量较高),且Cu原子的扩散速率又比较低,应选择较高的固溶温度;但该合金的过烧敏感性又很高,因此一般选择的固溶温度在510~530℃范围内,稍微低于过热温度;保温时间通常在2h左右,对于大块材料(厚的板材,粗的棒)可以适当延长保温时间。

2时效热处理

Al-Cu-Mg-Ag合金经固溶热处理后形成过饱和固溶体,在人工时效过程中,微量Ag元素降低合金基体{111}A1面的层错能,促使Ag-Mg团簇和{111}A1面上聚集的Cu原子聚集(Cu原子在{111}A1面上发生偏聚,形成{111}A1面GP区),成为Ω相的形核质点;同时过饱和固溶体中Cu原子易直接从{100}Al面上脱溶析出(形成Cu原子团的偏聚区,即{100}A1面GP区);随时效时间的延长,它们分别脱溶析出强化相Ω相和θ''''相;θ''''相和Ω相是亚稳相,在较高温度下最终转化为平衡相θ相。即Al-Cu-Mg-Ag合金的脱溶序列为:SSS(过饱和固溶体)→Ag-Mg团簇→Ω相→θ相、SSS→Cu-Cu团簇→GP区→θ''''相→θ相。时效过程中Ω相和θ''''相的密度和形态决定时效的效果,进而影响合金的性能。因此,可以通过改变时效工艺来改善Al-Cu-Mg-Ag合金的性能,常用的时效工艺有单级时效、多级断续时效、形变时效、应力时效等。

2.1单级时效单级时效是2000系铝合金常用的热处理制度,同时也是其它时效工艺的基础。Al-Cu-Mg-Ag合金的单级时效分为自然时效和人工时效。自然时效由于抑制了强化相Ω相的析出,合金的强度较低。单级人工时效促进了强化相Ω和θ''''相的析出,合金的强度较高。由于Al-Cu-Mg-Ag合金在较高的温度(165℃以上)时效时才会析出Ω相,且Ω相的尺寸随时效温度的升高而增加,过高的时效温度(250℃以上)更容易使Ω相和θ''''相粗化或者转化为θ相,对晶界也有所削弱,从而降低合金性能[21-22]。因此,Al-Cu-Mg-Ag合金单级人工时效,一般选择时效温度为160~200℃。但是高温短时间人工时效能够极大地提高合金的高温持久性能,对Al-5.06Cu-0.44Mg-0.3Mn-0.55Ag-0.17Zr合金[23]在高温(250℃)时效后在200℃/300MPa下进行持久试验,其峰值时效状态的持久寿命长达31h;而对应的165℃时效后的持久寿命小于16h。Al-Cu-Mg-Ag合金有很高的时效响应速度,且在相同条件下时效温度越高达到峰时效的时间也越短[23-25],文献[23]中的合金在250℃下时效5min后就达到了峰值强度(σb=458MPa)。Al-Cu-Mg-Ag合金时效过程为单峰时效过程,即经过欠时效、峰时效和过时效阶段。欠时效态合金虽然析出相的密度没有达到最大值,但是析出相更加细小,使其有较高的强度,同时在高温使用时会发生二次强化相的析出,使其有很好的抗蠕变性和耐高温性[26]。峰时效态合金(达到峰时效的时间一般为4~10h)组织由大量Ω相和少量的θ''''相组成,析出相密度达到最大值,常温力学性能最好[4,27],对于Al-4.83Cu-0.45Mg-0.50Ag-0.29Mn-0.12Zr合金[4]在165℃下时效6h后达到峰值强度σb=472MPa,σ0.2=455MPa,对应的伸长率为12.68%。过时效态合金,随着时效时间的延长合金的强化相逐渐粗化,强度有所下降。

2.2多级断续时效多级断续时效是Lumley等在研究Al-Cu-Mg-Ag合金的抗蠕变性时发现的,根据这一现象CSIRO公司发明了T6I6和T6I4等多级时效热处理技术;与单级人工时效(T6态)相比,除保留与T6态相同的性能外,由于θ''''相的析出密度得到提高,使Al-Cu-Mg-Ag合金的塑性得到提高[28-31]。Al-Cu-Mg-Ag合金的多级断续时效一般是三级时效。在第一级的高温欠时效(一般时效温度为160℃或185℃,时效时间≤2h)过程中,析出大量的Ω相和少量θ''''相,并随着时效时间的延长,析出相不断长大(同单级欠时效)。在第二级的低温时效(时效温度为室温或65℃)过程中,Ω相的析出受到抑制,而θ''''相继续析出。在第三级的较高温再时效(时效温度为150℃或165℃)过程中,Ω相和θ''''相同时析出长大,Ω相为主要强化相,θ''''相相对较少[28,31-33]。最后合金组织中析出大量的Ω相和θ''''相,使合金具有很好的强度和塑性。有时为了简化试验流程省去第二级的低温时效,合金也能获得较好的性能[28]。张坤等[29]对高纯Al-4.61Cu-0.47Mg-0.44Ag合金采用二级时效工艺,第一级采用185℃×30min预时效后水淬,然后进行150℃×25h较高温时效,该工艺明显缩短热处理周期,同时合金强度与T6态相当(σ0.2=420MPa左右),伸长率却由8%升高到14%,使塑性得到显著改善。对于Al-5.3Cu-0.8Mg-0.5Ag-0.3Mn-0.15Zr合金[28,30]在185℃下欠时效2h后,当在较低的温度(65℃)下进行二次时效时,合金的硬度为151HV比T6态(185℃×4h)低10HV,伸长率为14%比T6态高1.4%;当在较高的温度(150℃)下进行二次时效时,合金的硬度为165HV、伸长率为13.8%,都高于T6态。对于Al-(4.8~4.9)Cu-(0.43~0.47)Mg-(0.30~0.39)Ag-0.15Zr合金[31-32],先在160℃时效2h,然后在65℃下时效67~240h,二级低温时效对合金的硬度几乎没有影响,然后三级时效在160℃时效24h左右达到峰值硬度160HV左右,合金的性能和T6态(160℃×12h)相差不多。

2.3形变时效形变时效热处理将加工硬化和时效析出强化相结合以改善合金的性能。在固溶后时效前对合金进行预变形,增加合金组织中的位错密度,利用沉淀相在位错线上优先形核,增加沉淀相的形核率和析出相的密度,降低时效析出相的尺寸,改变合金在后续时效过程中的脱溶序列,进而改变合金的微观组织结构[34-35]。在传统的Al-Cu-Mg系铝合金的预变形时效过程中,由于预变形引入大量位错亚结构促进了非均匀形核的强化相θ''''的析出,使合金的强度得到显著提高[36]。但是形变时效(一般选择的预变形量为2%~6%)对Al-Cu-Mg-Ag合金性能的影响则较为复杂,这可能是由于合金成分、时效温度和时间以及预变形量的不同,导致析出的强化相θ和Ω相的密度和尺寸不同,进而影响合金的性能。陈瑞强等[37]发现Al-5.12Cu-0.40Mg-0.89Ag-0.32Mn-0.17Zr合金的最佳形变热处理工艺为4%预拉伸、165℃×10h人工时效,该合金可获得室温σb≥473MPa,σ0.2≥428MPa,δ≥11.3%的满意综合性能;文献[38-39]也认为,时效前的预拉伸能提高合金的性能。但肖代红等[40]对Al-5.3Cu-0.8Mg-0.3Ag合金的预拉伸量为0、2.5%、5%的3种状态的合金在185℃经峰时效处理后,其室温σb分别为530、510、475MPa,σ0.2分别为477、456、410MPa,δ分别为10.5%,11.0%、12.3%,这显示时效前预拉伸降低了合金的强度提高了合金的塑性。而李周兵等[41]对Al-5.20Cu-0.40Mg-1.02Ag-0.2Mn-0.17Zr合金进行0、4%预拉伸后,再在165℃下进行时效,此时σb分别为492MPa、508MPa,σ0.2分别为455MPa、468MPa,δ分别为15.2%、12.9%,此结论与文献[40]的相反,即时效前预拉伸提高了合金的强度降低了合金的塑性。一般认为时效前预拉伸(或冷加工)不改变析出相的种类,由于增加了位错密度,抑制了{111}Al面Ω相的析出,但是却细化了Ω相的尺寸;位错和晶界缺陷为θ''''相的异相形核提供了形核质点,从而促进了{100}Al面θ''''相的析出[37,41-45]。由于高温强化相Ω相体积分数的减少,峰时效状态的合金的耐热性能降低;同时总体上造成时效态合金的时效过程延缓,硬化水平降低,峰时效时间延长[40,42]。

2.4应力时效应力时效是指在时效过程中引入一个小于屈服极限的应力,在温度和应力的耦合作用下,使析出的强化相发生显著变化。时效过程中施加外应力不会改变合金再结晶晶粒的形貌,但对Al-Cu-Mg-Ag合金组织中强化相的析出序列、数量、大小和分布等都有显著影响[46-47]。应力时效延缓了Al-Cu-Mg-Ag合金中强化相θ''''和Ω的析出[48]。这可能是由于在应力时效初期(约2min)产生大量位错阻碍了溶质原子的扩散,延缓了Cu-Cu团簇或Ag-Mg共聚团簇的形成,从而延缓了强化相θ''''和Ω的析出,最终使峰时效时间延长。应力时效能够促进θ''''相的析出,而抑制Ω相的析出,使合金的峰值硬度降低[49]。这可能是因为外加应力的存在,产生了大量的位错,为θ''''相的异相形核提供了有利的位置,但位错的存在不利于溶质原子的扩散,阻碍了Mg-Ag共聚原子团簇的形成,从而延缓了合金中强化相Ω的析出,最终使合金的硬度下降。在应力时效作用下,Al-Cu-Mg-Ag合金的强化相θ''''相和Ω相均沿某一方向(外加拉应力的方向[50])呈择优取向析出,即产生应力位向效应。研究发现,外加应力对Al-Cu-Mg-Ag合金时效动力学过程的影响主要是在相的成核阶段,且存在一个调整微观结构演化的临界应力值,当超过临界值时易在惯析面成核,即在惯析面析出沉淀相;在160℃下,对θ''''相临界应力为16~19MPa,对于Ω相临界应力为120~140MPa[50]。根据扩散理论结合弹性理论[49],外应力会使得合金中溶质原子沿不同的方向扩散速度不同,使时效初期共格片状相出现择优取向效应,从而产生位向效应。Eshelby弹性夹杂物理论[46,51]认为,外加应力与不同变体相互作用引起的系统弹性性能变化的不同将导致析出相择优取向析出,而且析出相在长大过程中错配应变的大小及符号的变化将会产生完全相异的结果。通过塑性和弹性夹杂模型[47],可以定性预测分布在{100}面和{111}面的相的各向异性。外加应力时效(一般选择200MPa)会降低Al-Cu-Mg-Ag合金的时效硬化速率,延长欠时效的时间,减小峰值硬度,同时也提供了一种控制高强铝合金(屈服强度)各向异性的方式[47]。对于Al-5.3Cu-0.8Mg-0.5Ag-0.3Mn-0.15Zr合金[48-49]在170℃下进行无外加应力时效和200MPa外加应力时效时发现,在没有外加应力时效时,合金硬度在12h后就达到峰值(161.5HV)然后逐渐下降;应力时效的硬度在16h后才达到峰值(157.9HV),且随时效时间的延长仍保持较高的硬度。

3结语

热处理工艺论文范文第5篇

1.1球化退火锻造后球化退火的主要作用是为接下来的热处理做准备,经过球化退火的材料能够效降低材料的硬度,提高其韧度,其塑韧性有了明显的提高,同时减小了对淬火温度的敏感性。不过在进行球化退火前要保证组织为细片状珠光体,如果不能够达到该要求,要在进行球化退火前对其进行处理。按照有关规定,在未进行球化退火的组织应在2-5级5范围内才为合格。

1.2淬火工艺采用等温淬火工艺能够很好地满足圆板牙的工艺要求。在利用等温淬火进行工艺加工前,要在600℃~650℃的高温下进行预热,预热的目的是降低圆板牙发生脱碳的几率。根据未落碳化物数量及原材料的球化级别、加工尺寸等诸多因素确定淬火加热的温度。尺寸较大的圆板牙一般情况下,选择低温淬火加热处理。由于W18Gr4V中含有Si元素,而该元素在进行加热的过程中极易发生脱碳,所以在加热的过程中要使用较特殊的加热炉,如盐浴炉、可控气氛炉或真空炉,其中盐浴炉的脱氧作用可以有效降低圆板牙的脱碳倾向。保证适当的等温停留时间有助于提高钢的强韧性。等温停留时间一般维持30~45min,如果超出该范围其性能将明显降低。这主要是因为下贝氏体和残余奥氏体量过多。分析上表可发现,在进行淬火冷却时,要在硝盐槽中放入冷却水套或循环水管,以保证工件和工装带的温度平衡。

1.3回火工艺回火的主要作用是根据不同的工作性能要求,使其硬度、强度、塑性和韧性适当。前文中已经介绍Si、Cr元素可以有效提高钢的回火稳定性。

2圆板牙的热处理质量检验

2.1回火缺陷在经回火处理时,如果不能严格控制回火温度,将会出现钢的硬度过高或过低。不过当回火温度控制适当,这些问题就可以解决了。如果一次装炉量过多,或选用加热炉不当,将会出现硬度不均匀。当回火前工件内应力不平衡时,回火工件很可能发生变形。

2.2板牙热处理后变形分析板牙经过热处理后将会变形,目前,针对这一问题有两种解决方法:一种是在淬火前应对板牙进行弼质,使其内应力减到最小,保证其之直径大小同螺纹的中径尺寸相同。要保证棒料尺寸适当,尺寸过小,则会造成金属材料的浪费;尺寸过大,将会导致棒料扭曲、折断。被切削捧料的材料性能、切削速度,对于螺纹外径均有一定的影响。

2.3热处理过程金相组织分析W18Gr4V材料只有经过正火或球化退火才能进行粗加工,图2即为球化退火后的显微组织。浸蚀方法:4%硝酸酒精溶液浸蚀组织组成物:白色是珠光体,黑色是渗碳体。W18Gr4V在经淬火后的显微组织图如图3,其浸蚀方法如下:4%硝酸酒精溶液浸蚀组织组成物:M+A

2.4控制螺纹淬火的注意事项控制螺纹淬火的注意事项:在了解了螺孔及松紧情况后方可进行处理;利用经过脱氧后的盐浴炉对圆板牙进行预热和最终加热,同时要保证盐浴中有害物质不会造成螺纹的腐蚀;要保证工件的均匀加热;对特大型板牙(大于等于M80)的温度一般选择为150°C左右。

3结语

热处理工艺论文范文第6篇

将1~3号钢板试样分别加热到790、850和890℃,保温60min后出炉用水冷却至320~400℃,然后在空气中冷却至室温。35CrMo钢板淬火后的显微组织如图1所示。由图1可知,两种加热温度保温后的淬火组织截然不同。图1(a)所示组织中有铁素体、退化的珠光体,也有马氏体与贝氏体。原因是790℃的淬火温度低,没有完全进入奥氏体区,在冷却过程中形成的珠光体在加热过程中没有完全溶解,而铁素体也没有完全奥氏体化。所以淬火时由于奥氏体中碳含量少,形成的马氏体量也少,钢的硬度低。850℃温度下淬火时,钢的奥氏体化完全,奥氏体中含碳高,其淬火性能好,形成M+B,所以硬度远高于图1(a)对应组织的硬度。由图1(c)可知,890℃温度下淬火,钢的奥氏体化完全,其淬火后组织与850℃相似。淬火后,对1~3号试样分别取样后根据GB/T230.1—2004《金属洛氏硬度试验第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺)》标准进行洛氏硬度测试,测得1~3号试样的硬度分别为35、47、48HRC。由硬度测试结果可知,淬火加热温度高,淬火组织硬度大,但当淬火温度超过850℃时,淬火后组织以及硬度变化不大。790℃加热后淬火时,由于组织没有完全奥氏体化,实际生产中不宜采用该温度。综合考虑可知,850℃的淬火加热温度较为理想。

2回火温度对组织与性能的影响

将850℃淬火后的钢板(2号试样)再均分为3个试样,分别在550、620、660℃下保温100min进行回火,考察不同回火温度对35CrMo钢组织与性能的影响。35CrMo钢不同温度回火后的显微组织如图2所示。由图2可见,在水冷淬火时,随着回火温度的提高,淬火组织中碳化物不断球化,原淬火组织中的马氏体和贝氏体板条簇方向性减弱。对850℃淬火后不同温度保温100min回火后的3个试样分别取样测试其硬度,结果如表2所示。由表2可知,从550℃开始,随着回火温度的升高,回火的硬度呈下降的趋势。550℃回火时钢板硬度过大,而660℃回火时钢板硬度过小。综合考虑不同热处理工艺下35CrMo钢的组织和硬度情况,将850℃×60min水冷淬火+620℃×100min回火作为现场生产工艺。为更深入细致地了解35CrMo钢在850℃水冷淬火、620℃回火条件下的精细组织,对此条件下处理后的试样进行了透射电镜观察,结果如图3所示。图3(a)~(b)反映出在35CrMo钢在850℃淬火、620℃回火条件下组织中为板条状马氏体+贝氏体组织。由图3(c)可知,在回火组织中依然有大量的位错存在,这些位错的存在是保证试验钢强度和硬度的原因之一。在回火组织中还有大量析出的短条棒状碳化物(见图3(d)),因其尺寸较小,无法在透射电镜下进行能谱分析,由于此钢中有1.0wt%左右的Cr的存在,推断分析可能是合金碳化物(Fe,Cr)3C或者Cr的碳化物。

3现场应用

根据以上试验结果,将850℃×60min水冷淬火+620℃×100min回火作为35CrMo钢板现场生产的调质工艺。莱钢宽厚板厂2013年共生产100mm厚度35CrMo钢板超过10000t,性能稳定,为企业创造了良好的经济效益。

4结语

热处理工艺论文范文第7篇

要提高连铸辊辊体材料的性能应从以下几方面入手:1)通过调整辊体材料的成分、增加合金成分的含量,提高淬透性;2)控制锻坯冶炼和锻造质量,提高材料的均匀性和纯净度,改善夹杂物形态,降低有害元素含量;3)采用能细化组织及晶粒的热处理工艺,提高材料的断裂韧性,降低裂纹扩展速度。

1.1辊体材料成分设计小炉冶炼的材料成分如表3所示,为保证一定的强度,规定了最低含碳量,为增加辊体材料的淬透性,Mn含量选取上限,三炉Ni、Cr含量进行了相应调整。其中01#与目前宝钢使用的R73连铸辊成分基本一致。

1.2熔炼方法三炉原料均采用IF钢以降低P、S含量,在50kg感应炉中冶炼,铸成电极棒,然后采用30kg电渣炉进行重熔,最终得到120mm电渣锭。

1.3锻造将120mm电渣锭锻成30mm×400mm拉伸试样毛坯、32mm×32mm×180mm冲击试样毛坯和40mm×26mm×450mm的J积分试样毛坯。锻造毛坯经950℃正火+650℃高温回火后,机加工至一定尺寸再进行调质热处理。

1.4调质热处理在盐浴炉中进行调质加热,在井式电炉中进行回火处理,炉温均经过校正。调质工艺采用二种方案:1)900℃水冷+690℃回火空冷2)900℃空冷+690℃回火空冷最终硬度均要求在连铸辊辊体材料所规定的硬度范围内,即32-37HSD,采用900℃空冷的目的是:比较在不同热处理方式下三种成分的连铸辊辊体内部性能和金相组织的差别。

1.5金相组织及性能测试分析经调质热处理的试样测试硬度值后,分别按GB/T228-2010、GB/T229-2007和GB/T21143-2007标准,进行拉伸、室温冲击、J积分试验。三种成分的试验钢种经调质处理后,采用OLYMPUS-BX51金相显微镜进行微观组织分析,冲击断口形貌采用NOVANANOSEM430型扫描电子显微镜观察分析。

2试验结果分析

小炉冶炼的三炉试验材料实际成分如表4所示,机械性能测试结果如表5所示,03#金相组织及断口电镜图片如图1、图2所示。

3结果讨论分析

图1是03#试样调质后的金相照片,从图中可以看出组织由已经再结晶的铁素体和均匀分布的细粒状渗碳体组成,并且渗碳体充分析出,均匀弥散分布,基体呈细小的等轴状。因此03#经调质处理后,具有较高的强度和硬度,同时具有更好的塑性和韧性,综合力学性能优异。图2是03#冲击试样的断口形貌,从图中可以看出断口形貌呈韧窝状,基本由圆形或者椭圆形的凹坑-韧窝组成,由此可以推断在冲击断裂过程中发生了明显的塑性变形,进一步说明了03#的塑性和韧性较好。由表5结果可知,在第一种热处理条件下,03#成分试样的强度虽然比R73、01#和02#略低,但强度值仍大于700MPa,满足了使用要求;而韧性指标大幅度提高,其中延性断裂韧度03#比01#提高了48%,冲击吸收功03#比R73提高了78%,塑性也得到了很大的提高,其中收缩率03#比R73提高了14%,因此03#在水淬和高温回火的情况下,综合力学性能良好。分析其主要原因在于03#中Ni和Cr的含量较高,部分溶于基体的Ni和Cr的产生了固溶强化,另外部分未溶的Ni和Cr以强化相的形式析出,这样实现了既保证强度达标又不降低韧性的目的[8]。断裂韧度对连铸辊来说是极重要的指标,连铸辊在恶劣的工况条件下,堆焊层经冷热疲劳最终要产生裂纹,产生的裂纹将向连铸辊内部扩展,高的断裂韧度,裂纹就不容易向辊体内部扩展,因此提高连铸辊的关键在于获得高的断裂韧性[7],由此可见03#成分对于防止疲劳裂纹的扩展具有重要的意义。另外在900℃空冷状态下,经高温回火后,其冲击功03#成分也比01#、02#高,可预期连铸辊内部在冷却速度比表面缓慢的情况下,采用03#成分的连铸辊塑韧性也要比01#、02#连铸辊好。从材料经过两种不同的热处理工艺后得到的力学性能上看,水冷和空冷所得的硬度基本一致,但是从强度上看水冷的要稍微低于空冷的,而在塑韧性上,水冷要高于空冷,尤其是冲击吸收功上,水冷后回火的值要比空冷后回火的高24%以上。而提高连铸辊使用寿命的关键就在于提高韧性,因此采用水冷后高温回火工艺更加合适,使用寿命也会有所提高。另外,可以从理论上判断锻件淬火能否直接采用水冷。根据热处理手册,首先应当考虑锻件化学成分和基础性能的影响,一般可以采用碳当量的计算公式计算,如公式1所示。按此式计算03#成分:[C]=0.56%≤0.75%,由此可见03#钢虽然提高了Ni、Cr含量,但是整体的碳当量还是处于较低的水平,所以水淬是安全的,不会引起巨大的内应力而淬裂的产生。从生产效率上看,直接水淬需要的时间更短,效率也更高,因此03#最佳的热处理工艺是900oC水冷+690oC回火空冷。

4结论

热处理工艺论文范文第8篇

用50kg中频感应电炉熔炼,金属炉料的加料顺序为:废钢、生铁,镍板、钼铁、铬铁、硅铁、锰铁,最后加铝进行终脱氧。合金熔炼温度为1500—1550℃,浇注温度1450—1500℃,稀土变质剂在炉外包中加入。钢液出炉后快速浇注成Y型试样。试验钢的化学成分见表1。性能试样均在Y型试块上截取,冲击试样采用10mm×10mm×55mm的无缺口标准试样,在JB-5型摆锤式冲击试验机上进行室温冲击韧性试验,每组试验数据均取其3根试样的平均值。硬度测试在HR-150A洛氏硬度计上进行,每块试样测3—5个点,取其平均值。采用光学显微镜和JSM-5610LV扫描电镜来观察试样的断口形貌和金相组织。

2实验结果及分析

2.1试样的铸态组织图1为18Cr23MoVRE铸钢试样组织的扫描图片。由图1可知,18Cr23MoVRE铸钢试样的铸态组织由珠光体和少量片状马氏体+碳化物组成,晶粒粗大,碳化物呈块状、团球状和连续网状沿晶界分布。这主要是因为结晶过程中,先结晶的晶粒内合金元素含量较低,富裕的合金元素被推至结晶前沿,导致这些合金元素在结晶前沿富集,当这些合金元素达到一定的浓度时,在晶粒间形成碳化物,并沿晶界连续分布,如图1(a)所示。当18Cr23MoVRE铸钢经950℃淬火+300℃回火处理后,其组织为回火马氏体+碳化物,见图1(b),碳化物以短杆状、块状和菊花状沿晶界断续分布,马氏体基体得到细化,网状碳化物分布得到明显改善。随淬火温度的提高,颗粒状碳化物增多,基体晶粒粗化,细碳化物颗粒弥散分布于基体上,见图1(c)。当淬火温度达到1050℃时,马氏体基体和碳化物明显粗化,晶内细颗粒状碳化物增多,见图1(d)。因为在热处理温度下,晶界碳化物不断扩散进入基体晶粒内部,晶界碳化物减少,碳化物网被打破,淬火时这些溶入基体的合金元素来不及析出,被过饱和固溶于马氏体基体内,回火过程中,溶入马氏体内的合金元素以细颗粒碳化物的形式弥散均匀析出在基体上,改善了钢中碳化物的分布,热处理温度提高,热处理后钢的晶粒越粗大。可见,合理的热处理工艺可以改善钢的组织和碳化物分布。

2.2试验钢的力学性能18Cr23MoVRE耐磨铸钢试样经不同温度淬火+300℃回火热处理后的力学性能见图2。由图2可以看出,铸态18Cr23MoVRE耐磨铸钢的硬度值最小,为HRC44,随着淬火温度的升高,18Cr23MoVRE耐磨铸钢的硬度提高。当淬火温度升高至1000℃时,18Cr23MoVRE耐磨铸钢的硬度升至最高,达到HRC58.5,继续提高淬火温度至1050℃时,18Cr23MoVRE耐磨铸钢的硬度略有下降,为HRC58。可见,适当提高淬火温度,对18Cr23MoVRE耐磨铸钢硬度的改善有益,但淬火温度不宜过高。淬火之所以能提高18Cr23MoVRE耐磨铸钢的硬度,主要是因为提高淬火温度,有更多的碳原子及合金元素溶于奥氏体,淬火后马氏体中碳和合金元素的过饱和度增加,加剧了马氏体晶格畸变,固溶强化作用增大,从而提高了材料的硬度。从图2还可以看出,淬火温度对18Cr23MoVRE耐磨铸钢的冲击韧性也有一定的影响,铸态18Cr23MoVRE耐磨铸钢的冲击韧性为4.6J,相对较低;随着淬火温度的升高,18Cr23MoVRE耐磨铸钢的冲击韧性逐渐升高,当淬火温度达到1000℃时,18Cr23MoVRE耐磨铸钢的冲击韧性达到了5.8J;再升高淬火温度,18Cr23MoVRE耐磨铸钢的冲击韧性有降低的趋势。这主要是因为铸态18Cr23MoVRE耐磨铸钢组织是不均匀的,存在成分偏析,那些高碳高合金微区韧性往往较差,在热处理过程中,高碳高合金微区的元素在高温下向低碳低合金微区扩散,钢的成分、组织和韧性得到改善。当淬火温度较高时,由于晶粒长大使钢的组织粗大,脆性增加。因此,适当的热处理可提高18Cr23MoVRE耐磨铸钢的性能,以1000℃淬火+300℃回火最佳。

3结论