美章网 资料文库 载人航天空间载荷生物安全工程论文范文

载人航天空间载荷生物安全工程论文范文

时间:2022-10-17 05:06:29

载人航天空间载荷生物安全工程论文

1空间微生物的来源与危害

长期飞行的航天器环境是一种特殊类型的生态环境,适合属于特殊物种的细菌和真菌的生长发育和繁殖。细菌和真菌主要驻留在空间室内装饰物和结构与设备材料的表面。这些地方聚集着有机化合物和空气冷凝水,足以让各种异养微生物(如霉菌青霉、曲霉、枝孢菌)生长和繁殖。在航天器长期飞行期间,菌群的数量变化和结构动力学特性不是线性的,在生物群落激活和停滞的交替期间呈现出一个波形周期变化,变化周期由内部生物机制的自我调节能力和外部空间环境控制。菌群激活期间,充满着医疗和技术风险,显著地影响着飞行安全和硬件的可靠性。微生物可以轻易地借助航天员或者货运飞船进入空间站,同时迅速适应空间站内的环境并四处蔓延,微生物主要来源及在载人航天器中可能存在的位置如图1所示。前苏联科学家曾经在“礼花”号空间站与“和平”号空间站内发现上百种对人体和空间站设备有害的致病细菌和微小真菌。“和平”号空间站曾发生过微生物“蚕食”电缆的事故。国际空间站上也发现了危险的微生物,这些微生物可能导致设备发生故障,可能会对空间站结构造成灾难性后果。它们不仅会损伤金属,也会损伤高分子聚合物制成的设备,进而可能导致技术故障。2003年国际空间站内,细菌堵塞了3套舱外航天服的冷却泵,航天员不得不使用穿脱更为麻烦的备用服装完成了太空行走,造成问题的细菌生活在作为冷却液的水中。研究人员对空间站的水样进行分析后曾发现,空间站自身冷却系统内细菌数量增加的速度远比预料的快,这让人担心细菌有可能腐蚀冷却系统最为脆弱的组成部分。根据各种体外研究,空间微重力环境促进微生物的生长。不同的细菌在空间或在地球上模拟的微重力试验表明,重力变化可能直接或间接地影响它们的生长和微生物的代谢和生理,例如增加自身的抗药性和毒性,改变生物膜增长方式等。长期暴露于高剂量的空间电离辐射中,也能影响微生物的代谢和生理。除了封闭和微重力条件外,还存在各种未知因素影响微生物的生长,如热交换影响,磁变影响,细胞悬浮,营养物的浓度梯度、毛细特性、流体行为等均可能引起生物体的遗传和生物学特性的变异反应,这导致了某些微生物最终变得更难消除。因此,空间环境条件可能会促进微生物生长的这一新特征,并且增加了损害航天员健康和导致环境恶化的风险,影响生命支持系统的稳定性。

2空间应用系统生物安全工程技术体系框架

空间应用系统生物安全工程技术体系覆盖了在空间应用有效载荷的工程研制过程中应遵循的生物安全要求、分析、设计防护以及评价等各项技术范畴,其总体框架如下图2所示。图中可以看出,在空间有效载荷产品研制过程中,空间生物安全在工程上首先需要解决的是空间生物安全要求指标问题,然后根据生物安全要求,结合空间应用的需求情况,对应用系统的生物危害材料进行危害等级的识别,再依据危害等级的识别结果确定相应的安全性包覆等级,作为空间实验载荷设备的生物安全性设计准则要求,依据此设计准则开展相应的安全性设计防护;在采用了必要的防护措施同时,有效载荷对于生物危害还应具备有效的监测手段,确保空间应用实验过程中的生物危害可检测。最后,空间应用载荷在上站之前,应对生物安全问题进行风险评估,其结果将作为空间科学实验载荷上站安全性认证的重要考核内容之一,从而为工程决策提供安全性方面的依据。

2空间应用系统生物安全的工程设计要素

2.1空间应用系统生物安全指标要求借鉴实验室生物安全标准以及国际空间站有关生物安全的经验,生物安全指标主要是指针对微生物的最低可接受阈值,相关指标又可细分为饮用水、食品、舱内空气、表面四个主要方面,其中,饮用水、食品以及舱内空气的最低可接受阈值与航天员的医学要求密切相关。对于表面的生物安全要求,涉及舱内舱体内表面、舱内平台设备和有效载荷设备表面等多个方面,其可能的影响除了传染到航天员(航天员有可能接触的情况下),影响航天员健康外,另一个重要的影响就是对硬件设备的腐蚀和侵蚀,最终导致硬件设备的失效或者污染舱内环境。因此,对于空间应用系统设备,应提出明确的表面生物安全指标要求,该要求可以参照空间站平台的表面微生物最低可接受阈值要求,也可根据空间应用系统载荷研制的特点和使用需求单独提出。另外,对于影响实验任务成功的可致病的病原体(包括植物可致病病原体和动物可致病病原体)也应根据实际情况提出有针对性的指标要求。空间应用系统生物安全相关指标体系框架如图3所示。图中涉及的植物可致病菌主要是寄生性病菌,病原体有病毒、类病毒、支原体、衣原体、立克次氏体、细菌、真菌、藻类、线虫和高等植物,其中以细菌、真菌、病毒、支原体和线虫诱发的病害较普遍和严重,尤以真菌性病害为最,如水稻的瘟病、小麦锈病、棉花的萎蔫病等。各种病原体的生理、生态、增殖方法和生活史以及侵染寄主的方式、途径和时期各不相同。可根据具体实验样品和实验要求确定需要检测的植物可致病菌。动物可致病菌主要是微生物,包括原生动物、细菌、真菌、病毒、支原体、酵母等,其中细菌和真菌污染是最常见的,如各种沙门氏菌等。可根据具体实验样品和实验要求确定需要检测和加以控制防护的动物可致病菌。以微生物污染为主要检测对象,包括原生动物、细菌、真菌、病毒、支原体、酵母等,其中检测重点为细菌和真菌。空间站微生物主要存在于舱内气体、食品、水、舱体材料、硬件设备表面以及有效载荷等地方,因此,其微生物控制的要求也应根据这些方面进行规定。例如,国际空间站微生物控制的指标要求如表1所示。我国空间站工程微生物控制定量要求主要参照国际空间站制定,在我国载人航天工程一期和二期阶段,未对微生物控制提出明确的定量要求,在载人空间站阶段,提出的初步医学要求中,也仅仅对空气和物体表面微生物控制提出了限值,与表1中国际空间站的相关规定是一致的,而对于食品和水未作明确规定。

2.2空间应用系统生物安全等级的识别开展空间生物安全防护设计时,首先应对生物危害的等级(或称生物安全等级,BiosafetyLev-el,BSL)进行识别,根据不同的危害等级制定不同的设计防护策略,避免设计上的冒进所带来的安全性隐患,或者设计过于保守而带来的资源浪费和技术瓶颈。根据NASA的生物安全小组的工作经验,所有有关生物学的材料都要进行生物危害识别,对识别出的生物危害材料都要分配一个生物安全等级[18]。因此,生物危害材料生物安全等级的确定是生物安全工程设计的首要出发点。NASA的JSC中心针对空间应用项目的生物安全等级制定了专门的规定[19],如表2所示。空间生物安全等级主要来源于地面公共卫生系统和实验室生物安全的相关标准,在空间上用时考虑了空间环境可能带来的影响,由于空间飞行独特的环境和条件,BSL-2微生物又被分为两类,BSL-2(中等风险)和BSL-2(高风险)。主要是由于在微重力环境下,微生物气溶胶可能比在地球1g重力下具有更大的风险,对于地面上BSL-2等级的微生物在空间应用时可能产生更严重的后果。因此,在对空间生物安全等级的规定上进行了适应性修改,其原则为:对于地面上可能导致灾难性后果(高致病性)的微生物(BSL-3和BSL-4)禁止在太空项目中使用;对于地面上可能造成中等危害后果的微生物,其在空间环境影响下可能带来更严重的后果,甚至是灾难性的,因此,地面上BSL-2级微生物在太空中又分为中等危害和高危害两类。我国载人航天工程目前采用的生物安全等级划分标准主要遵照现有的国内实验室生物安全防护等级相关规定,对于空间生物安全等级尚无具体的标准进行规定。因此,合理的划分生物安全等级对于工程中遴选生物样本和明确有效的控制措施具有重要的意义。

2.3空间应用系统生物安全包覆等级的识别与设计

2.3.1空间应用系统生物安全包覆等级的确定工程实践中,在已明确了有效载荷生物安全等级BSL的基础上,需要根据生物安全等级确定相应的包覆设计等级(LevelofContainment,LoC)要求。两个重要的原则是:1)生物安全防护的包覆等级不得低于其生物安全等级;2)存在多种微生物的情况下,其包覆等级应根据生物安全等级最高的生物样品来确定。我国空间站空间应用规划了多项有关生物、生命、生态、医学等应用与科学领域实验项目。以当前规划的有关生命科学研究的实验平台为例,确定其初步的生物安全包覆等级,如表3所示。

2.3.2空间生物安全设计准则空间应用载荷生物安全控制的优先级主要包括五个层次(见图4)。工程设计实现过程中,有效载荷研制单位应根据识别出的生物载荷的生物安全等级确定相应的防护设计准则,遵循以下原则:1)生物材料的选择上,应在满足科学实验需求的前提下,尽量选择危害等级低的生物材料和样品;2)生物实验载荷的生物包覆等级应与其生物安全等级相对应,不得低于其生物安全等级;3)对于具有致病性或可能导致设备故障的主要微生物应具有实时监测或者离线检测能力;4)包覆设计应按照最小风险控制或者故障容限,或者两者相结合的设计准则进行设计,如金属结构采用较高的安全系数要求;采用多层密封包覆等;5)包覆设计应考虑最大使用条件下进行设计,并采用试验的方法验证;多层包覆设计时,应对每层包覆手段的有效性进行独立验证;6)采用物理隔离的方式进行包覆设计时,应满足密封设计要求,如所有泄漏路径均采用软密封件,垫片或其他密封材料进行双重密封;金属零件沿着所有接口有两个密封(如盖);流体连接器内部和外部的双道密封;电连接器外部双道密封和引脚周围双密封等;7)采用密封设计时,需要考虑容器材料与有害生物质的相容性设计与验证问题;8)采用多层包覆设计时,应尽量采用组合式包覆形式,即不同形式的隔离方式,如物理隔离与负压相结合,确保各级包覆是相互独立的,不会发生关联失效;样本操作用手套箱采用在手套故障的情况下保持负压的双故障容限的设计等;9)对于有限寿命的生物危害防护措施,如HEPA过滤器,应具有有效的寿命预测手段,以便采取定期的更换或者清洗消毒等措施。

2.4空间生物危险的监测空间微生物的监测是实施微生物控制的前提条件。目前对于载人航天工程领域,较为先进的微生物监测技术主要包括以下几项:1)非培养核酸技术(基于PCR聚合酶链反应);2)三磷酸腺苷生物发光技术(ATP);3)生物传感器,直接激光检测;4)流式细胞术方法;5)基质辅助激光解析/电离飞行时间质谱(Matrix-AssistedLaserDesorption/IonizationTimeofFlight(MALDI-TOF)massspectrometry);6)微观方法(MicroscopicMethods)。传统上,环境和人员的微生物监测主要集中在采用基于培养技术的细菌和真菌。然而,在空间环境中,采用大量的分子、生化和理化实验系统,建立在非培养技术基础之上。采用单一的监测技术往往难以满足微生物监测的需求,因此,在工程实践中,空间科学实验载荷研制单位应根据自身产品的特点,结合各种检测技术的优缺点,合理选用生物检测技术。生物检测技术选用参考表如表4所示。另外,空间科学实验载荷应重点监测BSL-2级以上的微生物。根据国外的经验(ISS,MIR)[10],空气中主要的细菌种类为金黄色葡萄球菌和枯草芽孢杆菌,内表面主要的细菌种类为金黄色葡萄球菌和芽孢杆菌等;真菌主要为青霉属和曲霉。在监测点设置方面,对于密闭的实验培养箱,应从空间应用的需求出发,对于影响实验效果的入口端应设置微生物监控装置,防止舱内空气和水源中的有害微生物影响实验效果;同时对于出口端同样需要设置微生物监控装置,防止科学实验产生的有害微生物污染舱内大气环境和热控管路。

2.5空间应用系统生物安全风险评估国际空间站上,有效载荷生物材料的生物危害风险评估在发射前必须进行,评估生物有害物质的标准包括微生物的特性,感染剂量,微生物的存量、感染途径,以及与实验协议相关的危害。识别出的所有有害微生物被分配一个生物安全等级(BSL)。有效载荷安全审议小组参照BSL为每个有效载荷制定必要的防护等级。空间应用生物安全风险评估的实施流程如图5所示。

3结论

本文在借鉴国外空间站生物安全工程经验的基础上,提出了我国空间应用系统开展科学实验载荷生物安全设计的工程体系,并对生物控制定量要求、空间生物安全等级的识别、空间科学实验载荷的生物安全包覆设计、空间生物危险的监测、空间生物危害风险评估等问题进行了剖析。在我国后续空间站空间应用系统的研制过程中,应结合相关科学实验应用的实际,针对空间生物安全这一影响航天员安全和空间站长期稳定运行的重要安全性问题,开展专门的研究,研究的重点应关注以下几个方面:1)空间应用系统的生物安全指标要求(即最低可接受阈值的确定)。随着在轨驻留时间以及空间应用任务规模的大幅增加,对于空间生物险材料的种类、生物危害的影响、航天员和空间站硬件系统所能承受的阈值等都带来了更大的不确定性。因此,有必要结合未来空间应用系统生物应用的实际需求,针对空间生物安全的指标要求开展更为深入研究。2)空间生物安全等级的识别与确定。生物安全等级划分的正确性和适当性直接影响着后续系统的设计方案与控制措施的有效性和合理性,生物安全防护措施的过设计将造成设计成本的增加和设计实现上的瓶颈,而生物安全防护措施的欠设计则带来难以接受的安全性风险。因此,有必要结合空间站应用系统的建设需求和实际,遴选满足科学实验需求的实验样品和实验项目,准确识别其生物安全等级,为工程设计提供安全、可靠、稳妥的设计基准。3)空间生物安全防护的工程实现问题。根据合理的生物安全等级确定生物安全防护等级(LoC),制定包覆设计准则,对于有效控制空间生物危害和最大限度、最高效地实施空间科学任务具有重要的意义。同时,生物安全防护的工程实践也是空间应用系统中有关生物危害材料选择和科学实验设施、设备研制的重要参考和依据。因此,有必要在空间站空间应用系统研制的早期,紧密结合空间应用系统的建设需求,梳理应用系统生物生态科学相关的科学实验载荷,在合理确定生物安全等级的基础上,研究制定有效的空间生物安全防护的安全性设计准则。

作者:王伟王功单位:中国科学院空间应用工程与技术中心

被举报文档标题:载人航天空间载荷生物安全工程论文

被举报文档地址:

https://www.meizhang.comhttps://www.meizhang.com/gclw/aqgclw/656087.html
我确定以上信息无误

举报类型:

非法(文档涉及政治、宗教、色情或其他违反国家法律法规的内容)

侵权

其他

验证码:

点击换图

举报理由:
   (必填)