论文发表 | 论文范文 | 公文范文
最新公告:目前,本站已经取得了出版物经营许可证 、音像制品许可证,协助杂志社进行初步审稿、征稿工作。咨询:400-888-7501
您现在的位置: 新晨范文网 >> 工业论文 >> 数据挖掘论文 >> 正文

数据挖掘视角下的电信客户流失预测

定制服务

定制原创材料,由写作老师24小时内创作完成,仅供客户你一人参考学习,无后顾之忧。

发表论文

根据客户的需要,将论文发表在指定类别的期刊,只收50%定金,确定发表通过后再付余款。

加入会员

申请成为本站会员,可以享受经理回访等更17项优惠服务,更可以固定你喜欢的写作老师。

【摘要】

随着4G时代的到来,电信行业的得到了空前的发展,用户数量快速增长,同时,电信各运营企业之间的竞争也日益激烈。面对激烈的电信市场竞争环境,以及日趋饱和的电信市场,获取新客户的成本比保持在网客户要昂贵得多。加之电信技术、法律法规、携号转网以及竞争对手等动态市场的变化,使客户流失到对手运营企业也更加容易。数据挖掘,作为一种新兴技术手段,可以高效、低成本的实现客户的流失预测,现已在电信、金融等行业得到了广泛应用。

【关键词】

数据挖掘;客户流失;算法

1、引言

流失客户,即是不想或不再使用其服务的企业原有客户。根据流失程度可分为两类:离网流失和业务流失,或称为显性流失和隐性流失。在我国,电信行业竞争日益激烈,市场容量逐渐饱和,在终端产品以及通信资费相对平稳的情况下,用户成为电信运营商激烈竞争的焦点。如何有效地防止用户流失、降低流失率成为各个运营商急需解决的难题。客户流失给运营商带来了巨大损失,而成功挽留一个即将流失的客户比重新发展一个客户节约大量成本。因此,利用数据挖掘技术,预测客户流失、减少客户流失的发生成为当下电信行业研究的重点。

2、客户流失预测常用算法及比较

客户流失预测常用算法。目前,常用的挖掘算法有很多,但客户流失分析较为常用的有三种算法,分别是决策树算法、支持向量机算法、神经网络算法。

(1)决策树算法当前最有影响的决策树算法是Quinlan于1986年提出的ID3和1993年提出的C4.5。ID3只能处理离散型属性,它选择信息增益最大的属性对训练样本进行划分,目的是进行分枝时,使系统的熵最小,从而提高算法的精确度。C4.5是ID3算法的改进算法,不仅可处理离散型属性,还能处理连续性属性。C4.5采用信息增益比作为选择分枝属性的标准,弥补了ID3算法的不足。决策树的优点在于,它可以生成可以理解的规则,计算量相对较小,可以处理连续和种类字段,并且可以清晰地显示哪些字段比较重要。但决策树对连续性的字段比较难预测,这是决策树的一个不足。

(2)支持向量机算法支持向量机(SupportVectorMachine,SVM)由Vapnik领导的AT&TBell实验室研究小组于1963年提出,当时的研究尚不十分完善。直到90年代,统计学习理论的实现和由于神经网络等较新的机器学习方法的研究在如何确定网络结构、过学习与欠学习、局部极小点等问题时遇到一些重要困难,这个阶段SVM的理论技术得到迅速发展与完善,它在解决小样本、非线性以及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等问题中,是一项有潜力的分类与回归技术。SVM也存在自身不足,SVM算法对大规模训练样本难以实施,同时,对于多分类问题存在困难。

(3)神经网络算法人工神经网络(ArtificialNeuralNetworks,ANN),也简称神经网络,它是由大量简单处理单元以某种方式互相连接而成,通过调整内部这些大量处理单元之间相互连接的关系,从而达到处理信息的目的。神经网络中,神经元处理单元可表示为特征、字母、概念或某些有意义的抽象模式等不同的对象。神经网络中处理单元类型可以分为三类:输入层单元、输出层单元和隐藏层单元。输入层单元负责接受外部世界的数据或信号;输出层单元实现网络处理结果的输出;隐藏层单元处于输入层和输出层单元之间,不能由系统外部观察的单元。神经元间的连接权值反映单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中,可对连续的或非连续的输入做出状态相应,能实现复杂的逻辑操作和非线性关系信息的动态处理,因而神经网络具有很强的逻辑运算和数值运算能力。神经元网络的优点在于有无指导的情况下都能够进行学习;缺点是神经网络很难解释而且会学习过度,另外神经网络建模通常较费时,需要的准备工作量很大。神经网络的著名算法是基于误差学习的后向传播算法,即BP算法。

3、电信客户流失预测研究展望

以下几方面在未来的研究中值得考虑:(1)对现有指标体系还需要进一步研究与完善,尤其是随着4G业务的发展,指标应该进一步调整。(2)现在国内的流失预测分析,大都以“月”为单位,如果能以“周”或者“日”为单位,可以更加及时的发现流失客户。(3)用于流失预测的算法各有利弊,找出一个在各方面性能都很好的分类算法仍然需要进一步研究。

【参考文献】

[1]肖水清.基于CRM探讨电信业的客户流失问题[J].现代计算机,2006(1)

[2]陈晋苏,郑惠莉.电信行业流失客户挽留价值综合评价研究[D].南京邮电大学,2005

[3]仲继.电信企业客户流失预测模型研究[D].西安科技大学,2014

[4]叶孝明,梁祺.多层前馈神经网络在客户流失分析中的应用[J].物流科技,2006(29)

作者:刘在友 王丽琳 单位:中国海洋大学管理学院

数据挖掘视角下的电信客户流失预测责任编辑:杨雪    阅读:人次